Skip to main content
Log in

Production of exopolysaccharide by Vagococcus carniphilus MCM B-1018 isolated from alkaline Lonar Lake, India

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A Gram positive bacterium obtained from a sediment sample from the alkaline Lonar Lake, India, was identified as Vagococcus carniphilus by morphological, physiological and biochemical characterisation and 16S rDNA sequencing. The bacterium grew in sodium chloride (NaCl) up to 2.5 M and at pH 7–11, 10 being optimum. Mucoid, glistening colonies were produced on exopolysaccharide (EPS) production medium (pH 10); the organism produced 1,126 mg l−1 EPS under optimized conditions. The gross chemical composition of Vagococcus EPS indicated 20% protein and 75% neutral sugars, while the monosaccharide composition revealed the presence of galactose and mannose with an additional three spots corresponding to unidentified compounds. FTIR analysis confirmed the presence of an alkyl group in the polysaccharide and revealed 75% similarity with standard dextran. Vagococcus carniphilus isolated from Lonar Lake was different from a previously reported strain with respect to its biotechnological potential for EPS production. In the present study, the newly isolated V. carniphilus from Lonar Lake was characterized and studied for production of EPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arias S, Moral AD, Ferrer MR, Tallon R, Quesada E, Bejar V (2003) Mauran, a exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  PubMed  CAS  Google Scholar 

  • Ashtaputre AA, Shah AK (1995) Studies on a viscous, gel-forming exopolysaccharide from Spingomonas paucimobilis GS1. Appl Environ Microbiol 61:1159–1162

    PubMed  CAS  Google Scholar 

  • Bouchotroch S, Quesada E, Moral A, Umas I, Bejar V (2001) Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide producing bacterium. Int J Syst Evol Microbiol 51:1625–1632

    Article  PubMed  CAS  Google Scholar 

  • Carsaro MM, Grant WD, Grant S, Marciano CE, Parrilli M (1999) Structure determination of an exopolysaccharide from an alkaliphilic bacterium closely related to Bacillus spp. Eur J Biochem 264:554–561

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  CAS  Google Scholar 

  • Dighe A, Jangid K, Gonzalez J, Pidiyar V, Patole M, Ranade D, Shouche Y (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol 4:20

    Article  PubMed  Google Scholar 

  • Dogsa I, Kriechbaum M, Stopar D, Laggner P (2005) Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophys J BioFAST 1–21

  • Fredriksson K, Dube A, Milton DJ, Balsundaram MS (1973) Lonar Lake, India: an impact crater in basalt. Science 180:862–864

    Article  PubMed  CAS  Google Scholar 

  • Ganesh Kumar C, Joo H, Choi J, Koo Y, Chang C (2004) Purification and characterization of an extra cellular polysaccharide from haloalkaliphilic Bacillus sp. I-450. Enzyme Microb Technol 34:673–681

    Article  Google Scholar 

  • Gao J, Bao H1, Xin M, Liu Y, Li Q, Zhang Y (2006) Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31*. J Zhejiang Univ Sci B 7(3):186–192

  • Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20:117–129

    Article  Google Scholar 

  • Iqbal A, Bhatti N, Nosheen S, Jamil A, Malik M (2002) Histochemical and physicochemical study of bacterial exopolysaccharides. Biotechnology 1:28–33

    Article  Google Scholar 

  • Jayaraman J (2003) Laboratory manual in biochemistry. New Age International, New Delhi

  • Jhingram AG, Rao KV (1954) Lonar Lake and its salinity. In: Records of the Geological Survey of India. 85:313–334

  • Joshi AA, Kanekar PP, Kelkar AS, Sarnaik SS, Shouche YS, Wani AA (2007) Moderately halophilic, alkalitolerant Halomonas campisalis MCM B-365 from Lonar Lake, India. J Basic Microbiol 47:213–221

    Article  PubMed  CAS  Google Scholar 

  • Joshi AA, Kanekar PP, Kelkar AS, Sarnaik SS, Borgave SB, Shouche YS, Wani AA (2008) Cultivable bacterial diversity of alkaline Lonar Lake, India. Microb Ecol 55:163–172

    Article  PubMed  Google Scholar 

  • Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore

  • Krulwich TA, Masahiro IB, Arthur A, Guffanti A (2001) The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505:158–168

    Article  PubMed  CAS  Google Scholar 

  • La Touche THD, Christie WAK (1912) The geology of the Lonar Lake. Rec Geol Surv India 14:266–289

    Google Scholar 

  • Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterization and design of bacterial exopolysaccaharides from lactic acid bacteria. Biotechnol Adv 19:597–625

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martinez-Checa F, Toledo FL, Vilchez R, Quesada E, Calvo C (2002) Yield, production, chemical composition and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Appl Microbiol Biotechnol 58:358–363

    Article  PubMed  CAS  Google Scholar 

  • Nicholaus B, Lama L, Esposito E, Manca MC, Importa R, Bellitti MR, Duckworth AW, Grant WD, Gambacorta A (1999a) Haloarcula spp. able to biosynthesize exo-endopolymers. J Ind Microbiol Biotechnol 23:489–496

    Article  Google Scholar 

  • Nicholaus B, Lama L, Manca MC, Gambacorta A (1999b) Extremophiles: polysaccharides and enzymes degrading polysaccharides. Recent Res Dev Biotechnol Bioeng 2:37–64

    Google Scholar 

  • Nichols CA, Garon S, Bowman JP, Guezennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96:1057–1066

    Article  CAS  Google Scholar 

  • Norberg AB, Persson H (1984) Accumulation of heavy metal ions by Zoogloea rarigera. Biotechnol Bioeng 26:239–246

    Article  PubMed  CAS  Google Scholar 

  • Perry TD IV, Ceraj V, Zhang X, McNamara CJ, Polz M, Martin S, Mitchell R (2005) Binding of harvested bacterial exopolymers to the surface of calcite. Environ Sci Technol 39:8770–8775

    Article  PubMed  CAS  Google Scholar 

  • Pham PL, Dupont I, Roy D, Lapointe G, Cerning J (2000) Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 66:2302–2310

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acidurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Seo E, Yoo S, Oh K, Cha J, Lee H, Park C (2004) Isolation of an unusual type of Spingan. Biosci Biotechnol Biochem 68:1146–1148

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker PL, Steigerwalt AG, Morey RE, Carvalho MS, Elliott JA, Joyce K, Barrett T, Teixeira LM, Facklam RR (2004) Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol 54:1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Sutherland I (1990) Biotechnology of microbial exopolysaccharides. In: Baddiley J, Higgins NH, Potter WG (eds) Cambridge studies in biotechnology, vol 9. Cambridge University Press, Cambridge

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Article  PubMed  CAS  Google Scholar 

  • Toeda K, Kurane R (1991) Microbial flocculant from Alcaligenes cupidus KT201. Agric Biol Chem 55:2793–2799

    Article  CAS  Google Scholar 

  • Tombs M, Harding SE (1998) An introduction to polysaccharide biotechnology. Taylor and Francis, London

    Google Scholar 

  • Yun UJ, Park HD (2003) Physical properties of an extracellular polysaccharide produced by Bacillus sp.CP912. Lett Appl Microbiol 36:282–287

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ARI, for laboratory facilities. A.A.J. thanks the Council of Scientific and Industrial Research (CSIR), Govt. of India, for a Senior Research Fellowship. We also thank Dr. Rohit Sharma for revising our English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaraja Abhay Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, A.A., Kanekar, P.P. Production of exopolysaccharide by Vagococcus carniphilus MCM B-1018 isolated from alkaline Lonar Lake, India. Ann Microbiol 61, 733–740 (2011). https://doi.org/10.1007/s13213-010-0189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0189-y

Keywords

Navigation