Skip to main content
Log in

Gene expression during long-term culture of mesenchymal stem cells obtained from patients with amyotrophic lateral sclerosis

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Ex-vivo expansion of bone marrow (BM)-derived mesenchymal stem cells (MSCs) before clinical use for amyotrophic lateral sclerosis (ALS) patients is essential but occasionally results in cellular senescence as well as decrease of differentiation potential. In this study, we analyzed the genes that are up- or down-regulated by the long-term culture of MSCs from the BM of ALS patients using microarray and real-time RT-PCR. Among the analyzed genes, 878 (cluster 11) including RUNX2, SMO, IHH, GPNMB, HGF, COL10A1 and WNT3 were continually downregulated during long-term culture, whereas 732 (cluster 14) including PCGF5, HHIP and SERPINB2 were continually up-regulated. A gene ontology (GO) analysis revealed that genes related to cell differentiation (GO:0030154), growth factor activity (GO:0008201) and ossification (GO:0001503) belonged to cluster 11. Genes related to cell morphogenesis (GO:0000902) and protein tyrosine phosphatase activity (GO:0004725) belonged to cluster 14. When we also analyzed DNA methylation in RUNX2 using methylation-specific PCR, the −3.8 kb and −3.0 kb CpG island shores adjacent to the promoter of RUNX2 DNA became hypermethylated upon successive subculture. These results suggest that the decrease in RUNX2 mRNA observed during the long-term culture of MSCs may be at least partially related to the hypermethylation of the RUNX2 CpG island shores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowland, L.P. & Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 344, 1688–1700 (2001).

    Article  CAS  Google Scholar 

  2. Mazzini, L. et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Exp. Neurol. 223, 229–237 (2010).

    Article  CAS  Google Scholar 

  3. Mazzini, L. et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4, 158–161 (2003).

    Article  Google Scholar 

  4. Mazzini, L. et al. Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol. Res. 28, 523–526 (2006).

    Article  Google Scholar 

  5. Cho, G.W. et al. Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev. 19, 1035–1042 (2010).

    Article  CAS  Google Scholar 

  6. Choi, M.R. et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci. Lett. 472, 94–98 (2010).

    Article  CAS  Google Scholar 

  7. Koc, O.N. & Lazarus, H.M. Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant. 27, 235–239 (2001).

    Article  CAS  Google Scholar 

  8. Friedenstein, A.J., Latzinik, N.W., Grosheva, A.G. & Gorskaya, U.F. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp. Hematol. 10, 217–227 (1982).

    CAS  Google Scholar 

  9. Bonab, M.M. et al. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 7, 14 (2006).

    Article  Google Scholar 

  10. Mareschi, K. et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J. Cell. Biochem. 97, 744–754 (2006).

    Article  CAS  Google Scholar 

  11. Banfi, A. et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp. Hematol. 28, 707–715 (2000).

    Article  CAS  Google Scholar 

  12. Tanabe, S. et al. Gene expression profiling of human mesenchymal stem cells for identification of novel markers in early- and late-stage cell culture. J. Biochem. 144, 399–408 (2008).

    Article  CAS  Google Scholar 

  13. Pathi, S. et al. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech. Dev. 106, 107–117 (2001).

    Article  CAS  Google Scholar 

  14. Noer, A., Boquest, A.C. & Collas, P. Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol. 8, 18 (2007).

    Article  Google Scholar 

  15. Antequera, F. Structure, function and evolution of CpG island promoters. Cell. Mol. Life Sci. 60, 1647–1658 (2003).

    Article  CAS  Google Scholar 

  16. Hong, J.H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    Article  CAS  Google Scholar 

  17. Abdelmagid, S.M. et al. Osteoactivin acts as downstream mediator of BMP-2 effects on osteoblast function. J. Cell. Physiol. 210, 26–37 (2007).

    Article  CAS  Google Scholar 

  18. Irizarry, R.A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  Google Scholar 

  19. Kang, M.I. et al. The length of CpG islands is associated with the distribution of Alu and L1 retroelements. Genomics 87, 580–590 (2006).

    Article  CAS  Google Scholar 

  20. Bang, O.Y., Lee, J.S., Lee, P.H. & Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 57, 874–882 (2005).

    Article  Google Scholar 

  21. Ling, L., Nurcombe, V. & Cool, S.M. Wnt signaling controls the fate of mesenchymal stem cells. Gene 433, 1–7 (2009).

    Article  CAS  Google Scholar 

  22. Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132–33140 (2005).

    Article  CAS  Google Scholar 

  23. Digirolamo, C.M. et al. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol. 107, 275–281 (1999).

    Article  CAS  Google Scholar 

  24. Wagner, W. et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 3, e2213 (2008).

    Article  Google Scholar 

  25. Selim, A.A. et al. Anti-osteoactivin antibody inhibits osteoblast differentiation and function in vitro. Crit. Rev. Eukaryot. Gene Expr. 13, 265–275 (2003).

    Article  CAS  Google Scholar 

  26. Ma, H.L., Hung, S.C., Lin, S.Y., Chen, Y.L. & Lo, W.H. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J. Biomed. Mater. Res. A 64, 273–281 (2003).

    Article  Google Scholar 

  27. Bian, L. et al. In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo 23, 21–27 (2009).

    CAS  Google Scholar 

  28. Kang, M.I. et al. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J. Cell. Biochem. 102, 224–239 (2007).

    Article  CAS  Google Scholar 

  29. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  30. Dennis, G., Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3 (2003).

    Article  Google Scholar 

  31. Baik, S.Y. et al. Fluoxetine-induced up-regulation of 14-3-3zeta and tryptophan hydroxylase levels in RBL-2H3 cells. Neurosci. Lett. 374, 53–57 (2005).

    Article  CAS  Google Scholar 

  32. Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Chai.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, M.R., Das, N.D., Jung, K.H. et al. Gene expression during long-term culture of mesenchymal stem cells obtained from patients with amyotrophic lateral sclerosis. BioChip J 6, 342–353 (2012). https://doi.org/10.1007/s13206-012-6406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-012-6406-y

Keywords

Navigation