Skip to main content
Log in

Functional synapse formation between compartmentalized cortical neurons cultured inside microfluidic devices

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

In this work, the formation of functional synapses between compartmentalized cortical neurons cultured inside three-compartment microfluidic devices in a controlled fashion is described. The proposed device can direct axons in an isolated compartment and, thus, facilitates isolated axons forming functional synapses with dendrites of other neurons in an isolated microenvironment. This microfluidic approach allows continuous real-time monitoring of neuronal processes and fluorescently tagged biomolecules involved in synapse formation, and provides an easy, simple, cost effective, and efficient method to develop and manipulate synapses in an isolated microenvironment without using surface patterning techniques or electrical stimulation. The results presented here suggest that this microfluidic approach could be used as an alternative method for the formation of functional synapses and their exhaustive examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002).

    Article  CAS  Google Scholar 

  2. Ferreira, A. & Paganoni, S. The formation of synapses in the central nervous system. Mol. Neurobiol. 26, 69–79 (2002).

    Article  CAS  Google Scholar 

  3. Garner, C.C., Zhai, R.G., Gundelfinger, E.D. & Ziv, N.E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–250 (2002).

    Article  CAS  Google Scholar 

  4. Thompson, S.M. Matching at the synapse. Science 308, 800–801 (2005).

    Article  CAS  Google Scholar 

  5. Kostyuk, P.G. Key role of calcium signaling in synaptic transmission. Neurophysiol. 39, 248–250 (2007).

    Article  CAS  Google Scholar 

  6. Zucker, R.S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  Google Scholar 

  7. Smith, S.M., Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci. 31, 559–568 (2008).

    Article  CAS  Google Scholar 

  8. Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 4, 251–265 (2003).

    Article  CAS  Google Scholar 

  9. Richards, D.A., Bai, J. & Chapman, E.R. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J. Cell Biol. 168, 929–939 (2005).

    Article  CAS  Google Scholar 

  10. Wolff, J.R., Laskawi, R., Spatz, W.B. & Missler, M. Structural dynamics of synapses and synaptic components. Behav. Brain Res. 66, 13–20 (1995).

    Article  CAS  Google Scholar 

  11. Akins, M.R. & Biederer, T. Cell-cell interactions in synaptogenesis. Curr. Opin. Neurobiol. 16, 83–89 (2006).

    Article  CAS  Google Scholar 

  12. Balena, T., Acton, B.A., Koval, D. & Woodin, M.A. Extracellular potassium regulates the chloride reversal potential in cultured hippocampal neurons. Brain Res. 1205, 12–20 (2008).

    Article  CAS  Google Scholar 

  13. Mammen, A.L., Huganir, R.L. & O’Brien, R.J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    CAS  Google Scholar 

  14. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  Google Scholar 

  15. Sutton, M.A., Taylor, A.M., Ito, H.T., Pham, A. & Schuman, E.M. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55, 648–661 (2007).

    Article  CAS  Google Scholar 

  16. Chronis, N., Zimmer, M. & Bargmann, C.I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007).

    Article  CAS  Google Scholar 

  17. Tourovskaia, A., Figueroa-Masot, X. & Folch, A. Longterm microfluidic cultures of myotube microarrays for high-throughput focal stimulation. Nat. Protoc. 1, 1092–1104 (2006).

    Article  CAS  Google Scholar 

  18. Yang, I.H., Siddique, R., Hosmane, S., Thakor, N. & Höke, A. Compartmentalized microfluidic culture platform to study mechanism of paclitaxel-induced axonal degeneration. Exp. Neurol. 218, 124–128 (2009).

    Article  CAS  Google Scholar 

  19. Liu, W.W., Goodhouse, J., Jeon, N.L. & Enquist, L.W. A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PLoS One 3, e2382 (2008).

    Article  Google Scholar 

  20. Taylor, A.M. et al., Microfluidic multicompartment device for neuroscience research. Langmuir 19, 1551–1556 (2003).

    Article  CAS  Google Scholar 

  21. Rhee, S.W. et al., Patterned cell culture inside microfluidic devices. Lab Chip 5, 102–107 (2005).

    Article  CAS  Google Scholar 

  22. Ling, Y. et al., A cell-laden microfluidic hydrogel. Lab Chip 7, 756–762 (2007).

    Article  CAS  Google Scholar 

  23. Peterman, M.C. et al., The artificial synapse chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif. Organs 27, 975–985 (2003).

    Article  CAS  Google Scholar 

  24. Peterman, M.C., Noolandi, J., Blumenkranz, M.S. & Fishman, H.A. Localized chemical release from an artificial synapse chip. Proc. Natl. Acad. Sci. USA 101, 9951–9954 (2004).

    Article  CAS  Google Scholar 

  25. Yoshimi, Y., Shinoda, K., Mishima, M., Nakao, K. & Munekane, K. Development of an artificial synapse using an electrochemical micropump. J. Artif. Organs 7, 210–215 (2004).

    Article  Google Scholar 

  26. Ma, W. et al., Central neuronal synapse formation on micropatterned surfaces. Brain Res. Dev. Brain Res. 111, 231–243 (1998).

    Article  CAS  Google Scholar 

  27. O’shaughnessy, T.J., Lin, H.J. & Ma, W. Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels. Neurosci. Lett. 340, 169–172 (2003).

    Article  Google Scholar 

  28. Denny, J.B. MAP5 in cultured hippocampal neurons: expression diminishes with time and growth cones are not immunostained. J. Neurocytol. 20, 627–636 (1991).

    Article  CAS  Google Scholar 

  29. Taylor, A.L. & Hewett, S.J. Potassium-evoked glutamate release liberates arachidonic acid from cortical neurons. J. Biol. Chem. 277, 43881–43887 (2002).

    Article  CAS  Google Scholar 

  30. Dai, Z. & Peng, H.B. Fluorescence microscopy of calcium and synaptic vesicle dynamics during synapse formation in tissue culture. Histochem. J. 30, 189–196 (1998).

    Article  CAS  Google Scholar 

  31. Hall, B.J. & Ghosh, A. Regulation of AMPA receptor recruitment at developing synapses. Trends Neurosci. 31, 82–89 (2008).

    Article  CAS  Google Scholar 

  32. Bannai, H., Lévi, S., Schweizer, C., Dahan, M. & Triller, A. Imaging the lateral diffusion of membrane molecules with quantum dots. Nat. Protoc. 1, 2628–2634 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seog Woo Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahto, S.K., Song, Hs. & Rhee, S.W. Functional synapse formation between compartmentalized cortical neurons cultured inside microfluidic devices. BioChip J 5, 289–298 (2011). https://doi.org/10.1007/s13206-011-5401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-011-5401-z

Keywords

Navigation