Skip to main content
Log in

Assessment of α-amylase and α-glucosidase inhibitory potential of Citrus reticulata peel extracts in hyperglycemic/hypoglycemic rats

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder of carbohydrate metabolism. The management of Diabetes mellitus with phytochemicals is hallmark of this research. Citrus species are known for their health benefits and are used as traditional food in South East Asia. The total phenolic content of peels was analyzed using different solvents, while Gallic acid was used as standard. Both ethanolic, aqueous extracts of Citrus reticulata peel showed good inhibitory activity against amylase (90.67%, 15.33%) and moderate against glucosidase (70.8%, 14.8%), respectively. Sixteen rats were randomly divided into four groups (G1, G2, G3, and G4); G1 is a negative control (water), G4 is a positive control (Acarbose), while other two are experimental groups like G2 (fed with 100 mL and 20 mg/mL in hypoglycemic and hyperglycemic trials) and G3 fed with 200 mL and 40 mg/mL in hypoglycemic and hyperglycemic trials. A significant effect of treatments and value of time was found in hyperglycemic rats. Ethanolic extract showed a significant reduction in blood glucose levels in hypoglycemic (overnight fasting) rats which was comparable to the positive control. These results suggest that C. reticulata peels can contribute as a useful food ingredient as a potential antihyperglycemic agent in managing type 2 diabetes mellitus. In future, C. reticulata peel will be a good candidate for pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aruoma OI, Landes B, Ramful-Baboolall D, Bourdon E, Neergheen-Bhujun V, Wagner K-H, Bahorun T (2012) Functional benefits of citrus fruits in the management of diabetes. Prev Med 54:S12–S16

    Article  Google Scholar 

  • Asencio AD, Serrano M, García-Martínez S, Pretel MT (2018) Organic acids, sugars, antioxidant activity, sensorial, and other fruit characteristics of nine traditional Spanish citrus fruits. Eur Food Res Tech 244(8):1497–1508

    Article  CAS  Google Scholar 

  • Bhagyawant S et al (2019) Chickpea (Cicer arietinum L.) lectin exhibit inhibition of ACE-I, α-amylase and α-glucosidase activity. Protein Pept Lett 26(7):494–501. https://doi.org/10.2174/0929866526666190327130037

    Article  CAS  PubMed  Google Scholar 

  • Borg MJ, Jones KL, Sun Z, Horowitz M, Rayner CK, Wu T (2019) Metformin attenuates the postprandial fall in blood pressure in type 2 diabetes. Diabetes Obes Metab 21(5):1251–1254. https://doi.org/10.1111/dom.13632

    Article  CAS  PubMed  Google Scholar 

  • Bouabid K, Lamchouri F, Toufik H, Sayah K, Cherrah Y, Faouzi ME (2018) Phytochemical screening and in vitro evaluation of alpha amylase, alpha glucosidase and beta galactosidase inhibition by aqueous and organic Atractylis gummifera L. extracts. Plant Sci Today 5(3):103–112. https://doi.org/10.14719/pst.2018.5.3.393

    Article  CAS  Google Scholar 

  • Camberos EP, Díaz EL, Fernandez JMF, Owolabi MS, Allen K, Socorro Villanueva-Rodríguez SV (2014) Evaluation of the inhibition of carbohydrate hydrolyzing enzymes, the antioxidant activity, and the polyphenolic content of Citrus limetta peel extract. Sci World J. https://doi.org/10.1155/2014/121760

    Article  Google Scholar 

  • Dagenais GR et al (2016) Variations in diabetes prevalence in low, middle, and high-income countries: results from the prospective urban and rural epidemiological study. Diabetes Care 39(5):780–787. https://doi.org/10.2337/dc15-2338 (PMID: 26965719)

    Article  CAS  PubMed  Google Scholar 

  • Demiray S, Pintado ME, Castro PML (2009) Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots. World Acad Sci, Eng Tech 54:312–317

    Google Scholar 

  • Du Vigneaud V, Karr WG (1925) Carbohydrate utilization. J Biol Chem 66:281

    Article  Google Scholar 

  • Fathima MH, Thangavelu L, Roy A (2018) Anti-diabetic activity of cassia fistula (alpha amylase–inhibitory effect). J Adv Pharm Edu Res 8(2):12–15

    CAS  Google Scholar 

  • Habib MR, Kabir MS, Mominur M, Chowdhury M, Rahman A (2017) In vitro α-amylase inhibitory potential and in vivo hypoglycemic effect of organic extracts of phrynium imbricatum roxb leaves. Med One https://doi.org/10.20900/mo.20170026

  • Harrison DE, Strong R, Alavez S, Astle CM, DiGiovanni J, Fernandez E, Flurkey K, Garratt M, Gelfond JA, Javors MA, Levi M (2019) Acarbose improves health and lifespan in aging HET3 mice. Aging Cell 18(2):e12898. https://doi.org/10.1111/acel.12898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MA, Habila JD, Koorbanally NA, Islam MS (2017) α-Glucosidase and α-amylase inhibitory compounds from three African medicinal plants: an enzyme inhibition kinetics approach. Nat Prod Commun. https://doi.org/10.1177/1934578X1701200731

    Article  PubMed  Google Scholar 

  • Kalita D, Holm DG, LaBarbera DV, Petrash JM, Jayanty SS (2018) Inhibition of α-glucosidase, amylase, and aldose reductase by potato polyphenolic compounds. PLoS ONE 13(1):e0191025. https://doi.org/10.1371/journal.pone.0191025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakaya S, Gözcü S, Güvenalp Z, Özbek H, Yuca H, Dursunoğlu B et al (2018) The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm Biol 56(1):18–24. https://doi.org/10.1080/13880209.2017.1414857

    Article  CAS  PubMed  Google Scholar 

  • Kazeem MI, Adamson JO, Ogunwande IA (2013) Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida benth leaf. Przyborski JM, editor. Biomed Res Int. https://doi.org/10.1155/2013/527570

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar KP, Reddy VR, Prakash MG, Kumar KP (2018) In vitro estimation of total phenolics and DPPH radical scavenging activity of Withania somnifera extract. Pharma Innov J 7(3):588–590

    Google Scholar 

  • McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D (2005) Different polyphenolic components of soft fruits inhibit α-amylase and α-glycosidase. J Agric Food Chem 53(7):2760–2766

    Article  CAS  Google Scholar 

  • Menichini F, Loizzo MR, Bonesi M, Conforti F, De Luca D, Statti GA et al (2011) Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica L. cv Diamante flowers, leaves and fruits at two maturity stages. Food Chem Toxicol 49(7):1549–1555. https://doi.org/10.1016/j.fct.2011.03.048

    Article  CAS  PubMed  Google Scholar 

  • Mettupalayam Kaliyannan Sundaramoorthy P, Kilavan Packiam K (2020) In vitro enzyme inhibitory and cytotoxic studies with Evolvulus alsinoides (Linn) Linn leaf extract: a plant from Ayurveda recognized as Dasapushpam for the management of Alzheimer’s disease and diabetes mellitus. BMC Complement Med Ther 20(1):129. https://doi.org/10.1186/s12906-020-02922-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra A, Sattar N, Tandon N et al (2018) Clinical management of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol 6(12):979–991. https://doi.org/10.1016/S2213-8587(18)30199-2

    Article  PubMed  Google Scholar 

  • Mourya P (2018) In-vitro studies on inhibition of alpha amylase and alpha glucosidase by plant extracts of Alternanthera Pungens kunth. J Drug Delivery Therap 8(6):64–68

    Google Scholar 

  • Mumtaz MW, Al-Zuaidy MH, Abdul Hamid A, Danish M, Akhtar MT, Mukhtar H (2018) Metabolite profiling and inhibitory properties of leaf extracts of Ficus benjamina towards α-glucosidase and α-amylase. Int J Food Prop 21(1):1560–1574. https://doi.org/10.1080/10942912.2018.1499112

    Article  CAS  Google Scholar 

  • Munir MT, Kheirkhah H, Baroutian S, Quek SY, Young BR (2018) Subcritical water extraction of bioactive compounds from waste onion skin. J Cleaner Prod 183:487–494. https://doi.org/10.1016/j.jclepro.2018.02.166

    Article  CAS  Google Scholar 

  • Oboh G, Ademosun AO (2011) Phenolic Extracts from Grapefruit Peels (Citrus Paradisi) inhibit key enzymes linked with type 2 diabetes and hypertension. J Food Biochem 35(6):1703–1709

    Article  CAS  Google Scholar 

  • Padilla-Camberos E, Lazcano-Díaz E, Flores-Fernandez JM, Owolabi MS, Allen K, Villanueva-Rodríguez S (2014) Evaluation of the inhibition of carbohydrate hydrolyzing enzymes, the antioxidant activity, and the polyphenolic content of Citrus limetta peel extract. Sci World J. https://doi.org/10.1155/2014/121760

    Article  Google Scholar 

  • Poovitha S, Parani M (2016) In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern Med 16(1):185. https://doi.org/10.1186/s12906-016-1085-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proteggente AR, Saija A, De Pasquale A, Rice-Evans CA (2003) The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radical Res 37:681–687

    Article  CAS  Google Scholar 

  • Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48(8):3396–3402

    Article  CAS  Google Scholar 

  • Rahman NF, Shamsudin R, Ismail A, Shah NN, Varith J (2018) Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innov Food Sci Emerg Technol 50:217–225. https://doi.org/10.1016/j.ifset.2018.01.009

    Article  CAS  Google Scholar 

  • Sales M, Ballesteros E (2012) Seasonal dynamics and annual production of cystoseira crinita (Fucales: Ochrophyta)-dominated assemblages from the northwestern Mediterranean| Dinámica estacional y producción anual de las comunidades dominadas por cystoseira crinita (Fucales: Ochrophyta) del mediterráneo noroccidental

  • Sekar V, Chakraborty S, Mani S, Sali VK, Vasanthi HR (2019) Mangiferin from Mangifera indica fruits reduces post-prandial glucose level by inhibiting α-glucosidase and α-amylase activity. South Afr J Bot 120:129–133. https://doi.org/10.1016/j.sajb.2018.02.001

    Article  CAS  Google Scholar 

  • Sir Elkhatim KA, Elagib RA, Hassan AB (2018) Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci Nutr 6(5):1214–1219. https://doi.org/10.1002/fsn3.660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Shen Y, Liu D, Ye X (2015) Effects of drying methods on phytochemical compounds and antioxidant activity of physiologically dropped un-matured citrus fruits. LWT Food Sci Technol 60(2):1269–1275. https://doi.org/10.1016/j.lwt.2014.09.001

    Article  CAS  Google Scholar 

  • Tadera K, Minami Y, Takamatsu K, Matsuok T (2006) Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 52(2):149–153

    Article  CAS  Google Scholar 

  • Uddin N, Hasan MR, Hossain MM, Sarker A, Nazmul Hasan AHM, Mahmudul Islam AFM et al (2014) In vitro α-amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr fruit. Asian Pac J Trop Biomed 4(6):473–479. https://doi.org/10.12980/APJTB.4.2014C1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  Google Scholar 

  • Wilkerson HL, Hyman H, Kaufman M, McCuistion AC, Francis JOS (1960) Diagnostic evaluation of oral glucose tolerance tests in nondiabetic subjects after various levels of carbohydrate intake. N Engl J Med 262:1047–1053

    Article  CAS  Google Scholar 

  • Yang CY, Yen YY, Hung KC, Hsu SW, Lan SJ, Lin HC (2019) Inhibitory effects of Pu-erh tea on alpha glucosidase and alpha amylase: a systemic review. Nutrition Diabetes 9(1):23. https://doi.org/10.1038/s41387-019-0092-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Director IBBT, Prof. Dr. Wasim Shahzad for providing great support to conduct this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahat Naseer.

Ethics declarations

Conflict of interest

Authors declare that manuscript has not any conflict of interest.

Ethical approval

The research was conducted after approval from independent ethical committee UVAS vide letter no. 118/BeST center 18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghauri, S., Raza, S.Q., Imran, M. et al. Assessment of α-amylase and α-glucosidase inhibitory potential of Citrus reticulata peel extracts in hyperglycemic/hypoglycemic rats. 3 Biotech 11, 167 (2021). https://doi.org/10.1007/s13205-021-02717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02717-8

Keywords

Navigation