Skip to main content

Advertisement

Log in

Challenges of antibiotic resistance biofilms and potential combating strategies: a review

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this modern era, medicine is facing many alarming challenges. Among different challenges, antibiotics are gaining importance. Recent years have seen unprecedented increase in knowledge and understanding of various factors that are root cause of the spread and development of resistance in microbes against antibiotics. The infection results in the formation of microbial colonies which are termed as biofilms. However, it has been found that a multiple factors contribute in the formation of antimicrobial resistance. Due to higher dose of Minimum Bactericidal Concentration (MBC) as well as of Minimum Inhibitory Concentration (MIC), a large batch of antibiotics available today are of no use as they are ineffective against infections. Therefore, to control infections, there is dire need to adopt alternative treatment for biofilm infection other than antibiotics. This review highlights the latest techniques that are being used to cure the menace of biofilm infections. A wide range of mechanisms has been examined with particular attention towards avenues which can be proved fruitful in the treatment of biofilms. Besides, newer strategies, i.e., matrix centered are also discussed as alternative therapeutic techniques including modulating microbial metabolism, matrix degrading enzyme, photodynamic therapy, natural compounds quorum sensing and nanotechnology which are being used to disrupt extra polymeric substances (EPS) matrix of desired bacterial biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves MJ, Isabel CFR, Ferreira IL, Eduardo C, Anabela M, Manuela P (2014) Wild mushroom extracts as inhibitors of bacterial biofilm formation. Pathogens 3(3):667–679

    PubMed  PubMed Central  Google Scholar 

  • An SQ, Murtagh J, Twomey KB, Gupta MK, Sullivan TP, Ingram R, Tang JL (2019) Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues. Nat Commun. 10(1):1–11

    Google Scholar 

  • Arciola CR, Montanaro L, Costerton JW (2011) New trends in diagnosis and control strategies for implant infections. Int J Artif Organs 34(09):727–736

    CAS  PubMed  Google Scholar 

  • Ayrapetyan M, Williams TC, Oliver JD (2015) Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol 23:7–13

    CAS  PubMed  Google Scholar 

  • Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191:7333–7342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bekele, ST, Abay, GK, Gelaw, B, Tessema, B (2018) Bacterial biofilms; links to pathogenesis and resistance mechanism. https://doi.org/10.20944/preprints201807.0598.v1

  • Bengtsson-Palme J, Gunnarsson L, Larsson DJ (2018) Can branding and price of pharmaceuticals guide informed choices towards improved pollution control during manufacturing? J Clean Prod 171:137–146

    Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh FM (2015) JL Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

    CAS  PubMed  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51

    CAS  PubMed  Google Scholar 

  • Brauner A, Fridman O, Gefen O (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330

    CAS  PubMed  Google Scholar 

  • Briggs T, Blunn G, Hislop S (2018) Antimicrobial photodynamic therapy-a promising treatment for prosthetic joint infections. Lasers Med Sci 33(03):523–532

    PubMed  Google Scholar 

  • Camargo AC, Woodward JJ, Call DR, Nero LA (2017) Listeria monocytogenes in food-processing facilities, food contamination, and human listeriosis: the Brazilian Scenario. Foodborne Pathog Dis 14:623–636

    PubMed  Google Scholar 

  • Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, Diana P (2021) Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. Med Chem 16(1):65–80

    CAS  Google Scholar 

  • Cascioferro S, Parrino B, Petri GL, Cusimano MG, Schillaci D, Di Sarno V, Musella S, Giovannetti E, Cirrincione G, Diana P (2019) 2, 6-Disubstituted imidazo [2, 1-b] [1, 3, 4] thiadiazole derivatives as potent staphylococcal biofilm inhibitors. Eur J Med Chem 167:200–210

    CAS  PubMed  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolismand modes of cell death. Photodiagn Photodyn Ther 2(01):1–23

    CAS  Google Scholar 

  • Chowdhury N, Wood TL, Martínez-Vázquez M, García-Contreras R, Wood TK (2016) DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 113(09):1984–1992

    CAS  PubMed  Google Scholar 

  • Coenye T, Brackman G, Rigole P (2012) Eradication of Propioni bacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 19(5):409–412

    CAS  PubMed  Google Scholar 

  • Cox G, Wright GD (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303:287–292

    CAS  PubMed  Google Scholar 

  • Cranston, D, Sidebottom, E (2016) Penicillin and the legacy of Norman Heatley. Words by Design. Oxford (England). ISBN 9781909075467

  • Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S (2009) Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother 64(01):88–93

    CAS  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev 5:6-12

    Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    CAS  PubMed  Google Scholar 

  • Dörr T, Vulić M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8(2):1000317

    Google Scholar 

  • Ernest EP, Machi AS, Karolcik BA, LaSala PR, Dietz MJ (2018) Topical adjuvants incompletely remove adherent Staphylococcus aureus from implant materials. J Orthop Res 36(06):1599–1604

    CAS  PubMed  Google Scholar 

  • Fernández J, Greenwood-Quaintance KE, Patel R (2016) In vitro activity of dalbavancin against biofilms of staphylococci isolated from prosthetic joint infections. Diagn Microbiol Infect Dis 85(04):449–451

    PubMed  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    CAS  PubMed  Google Scholar 

  • Fratamico PM, Annous BA, Guenther NW (2009) Biofilms in the Food and Beverage Industries. Woodhead Publishing, Sawston, pp 1–580

    Google Scholar 

  • Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 9:898

    PubMed  PubMed Central  Google Scholar 

  • Giannelli M, Landini G, Materassi F (2017) Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci 32(04):857–864

    PubMed  Google Scholar 

  • Gião MS, Keevil CW (2014) Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microb Ecol 67:603–611

    PubMed  Google Scholar 

  • Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD (2015) The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front Microbial 6:1418

    Google Scholar 

  • Gries CM, Kielian T (2017) Staphylococcal biofilms and immune polarization during prosthetic joint infection. J Am Acad Orthop Surg 25(Suppl 1):S20–S24

    PubMed  PubMed Central  Google Scholar 

  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention -a journey to break the wall: a review. Arch Microbial 198:1–15

    CAS  Google Scholar 

  • Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS MIcrobo Rec 41(3):276–301

    CAS  Google Scholar 

  • Hernández-Sierra JF, Ruiz F, Cruz Pena DC (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed 4:237–240

    Google Scholar 

  • Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R (2011) Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193:5616–5622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Høiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr2/2 mice. Antimicrob Agents Chemother 51:3677–3687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(04):322–332

    PubMed  Google Scholar 

  • Hughes G, Webber MA (2017) Novel approaches to the treatment of bacterial biofilm infections. Br J Pharmacol 174:2237–2246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iannitelli A, Grande R, Di Stefano A, Di Giulio M, Sozio P, Bessa LJ, Laserra S, Paolini C, Protasi F, Cellini L (2011) Potential antibacterial activity of carvacrol-loaded poly (DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int J Mol Sc 12(8):5039–5051

    CAS  Google Scholar 

  • Jolivet-Gougeon A, Bonnaure-Mallet M (2014) Biofilms as a mechanism of bacterial resistance. Drug Discov Today Technol 11:49–56

    PubMed  Google Scholar 

  • Jones-Dias D, Manageiro V, Caniça M (2016) Influence of agricultural practice on mobile blagenes: Inc I1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Environ Microbiol 18:260–272

    CAS  PubMed  Google Scholar 

  • Kalpana BJ, Aarthy S, Pandian SK (2012) Antibiofilm activity of α-amylase from Bacillus subtilis S8–18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol 167(6):1778–1794

    CAS  PubMed  Google Scholar 

  • Kaplan JB (2009) Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 32(09):545–554

    CAS  PubMed  Google Scholar 

  • Kaur G, Balamurugan P, Vasudevan S, Jadav S, Princy SA (2017) Antimicrobial and Antibiofilm potential of acyclic amines and diamines against multi-drug resistant Staphylococcus aureus. Front Microbiol 8:1767

    PubMed  PubMed Central  Google Scholar 

  • Khan F, Pham DTN, Kim Y (2020) Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 104:1955–1976

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Ikemoto Y (2019) Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms. PLoS Genet 15(10):1008232

    Google Scholar 

  • Kolodkin-Gal I, Cao S, Chai L, Bo¨ttcher T, Kolter R, Clardy J, Losick R (2012) A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149:684–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, HallStoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulshrestha S, Khan S, Hasan S, Khan ME, Misba L, Khan AU (2016) Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol 100:1901–1914

    CAS  PubMed  Google Scholar 

  • Kulshrestha S, Khan S, Meena R, Khan AU (2014) A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling 30:1281–1294

    CAS  PubMed  Google Scholar 

  • Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, Husman AMR, Patriq Fagerstedt P, Jerker Fick J, Carl-Fredrik Flach CF, Gaze WH, Makoto Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Plant L, Ploy MC, Segovia C, Simonet P, Smalla K, Snape J, Topp E, Hengel AJV, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson AS (2018) Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ Int 117:132–138

    PubMed  Google Scholar 

  • Laxminarayan R, Amábile-Cuevas CF, Cars O, EvansT Heymann DL, Hoffman S, Holmes A, Mendelson M, Sridhar D, Woolhouse M, Røttingen JA (2016) UN High-Level Meeting on antimicrobials—what do we need? The Lancet 388(10041):218–220

    Google Scholar 

  • Lerch TZ, Chenu C, Dignac MF, Barriuso E, Mariotti A (2017) Biofilm vs planktonic lifestyle : consequences for pesticide 2, 4-D metabolism by Cupriavidus necator. Front Microbiol 8:1–11

    Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    CAS  PubMed  Google Scholar 

  • Li J, Ma L, Liao X (2018) Ultrasound-induced Escherichia coli O157: H7 cell death exhibits physical disruption and biochemical apoptosis. Front Microbiol 9:2486

    PubMed  PubMed Central  Google Scholar 

  • Li YJ, Harroun SG, Su YC (2016) Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrugresistant bacteria. Adv Healthc Mater 5(19):2545–2554

    CAS  PubMed  Google Scholar 

  • Lonn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA (2009) Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections. J Antimicrob Chemother 63:309–316

    CAS  PubMed  Google Scholar 

  • Malhotra R, Dhawan B, Garg B, Shankar V, Nag TC (2019) A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: an in vitro study. Indian J Orthop 53(01):148–153

    PubMed  PubMed Central  Google Scholar 

  • Manaia CM (2017) Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol 25(3):173–181

    CAS  PubMed  Google Scholar 

  • McCarty S, Percival SL, Hunt JA, Woods EJ (2014) The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen 22(2):174–186

    PubMed  Google Scholar 

  • McCluskey J, Hinds J, Husain S, Witney A, Mitchell TJ (2004) A two-component system that controls the expression of pneumococcal surface antigen A (PsaA) and regulates virulence and resistance to oxidative stress in Streptococcus pneumoniae. Molecular Microbiol 51(6):1661–1675

    CAS  Google Scholar 

  • Metso L, Mäki M, Tissari P (2014) Efficacy of a novel PCR- and microarray-based method in diagnosis of a prosthetic joint infection. Acta Orthop 85(02):165–170

    PubMed  PubMed Central  Google Scholar 

  • Misba L, Khan AU (2018) Enhanced photodynamic therapy using light fractionation against S. mutans biofilm: type I and type II mechanism. Future Microbiol 13:437–454

    CAS  PubMed  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4: VMBF–0016–2015

  • Muñoz-Egea MC, Garcia-Pedrazuela M, Mahillo-Fernandez I, Esteban J (2016) Effect of antibiotics and antibiofilm agents in the ultrastructure and development of biofilms developed by nonpigmented rapidly growing mycobacteria. Microb Drug Resist 22:1–6

    PubMed  Google Scholar 

  • Nithya C, Devi MG, Karutha PS (2011) A novel compound from the marine bacterium Bacillus pumilus S6–15 inhibits biofilm formation in gram-positive and gram-negative species. Biofouling 27:519–528

    CAS  PubMed  Google Scholar 

  • O’Neill J. (2016) Tackling drug-resistant infections globally: final report and recommendations. Rev Antimicrobal Resist

  • Parrino B, Attanzio A, Spanò V, Cascioferro S, Montalbano A, Barraja P, Tesoriere L, Diana P, Cirrincione G, Carbone A (2017) Synthesis, antitumor activity and CDK1 inhibiton of new thiazole nortopsentin analogues. Eur J Med Chem 138:371–383

    CAS  PubMed  Google Scholar 

  • Parrino B, Carbone D, Cascioferro S, Pecoraro C, Giovannetti E, Deng D, Girolamo C, Diana P (2021) 1, 2, 4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur J Med Chem 209:112892

    CAS  PubMed  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    CAS  PubMed  Google Scholar 

  • Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes asemerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450

    CAS  PubMed  Google Scholar 

  • Qayyum S, Khan AU (2016) Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles. IET Nanobiotechnol 10(05):349–357

    PubMed  Google Scholar 

  • Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, Hay SI, Jiwakanon J, Kakkar M, Kariuki S, Laxminarayan S, Lubroth J, Magnusson U, Ngoc PT, Van Boeckel TP, Woolhouse ME (2016) Antibiotic resistance is the quintessential one health issue. Trans R Soc Trop Med Hyg 110(2016):377–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure OE, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose T, Verbeken G, Vos DD (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4(02):66–73

    PubMed  PubMed Central  Google Scholar 

  • Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9:522–554

    CAS  PubMed  Google Scholar 

  • Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G, Cascioferro S (2017) Pharmaceutical approaches to target antibiotic resistance mechanisms. J Med Chem 60(20):8268–8297

    CAS  PubMed  Google Scholar 

  • Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:76

    PubMed  PubMed Central  Google Scholar 

  • Shoji MM, Chen AF (2020) Biofilms in periprosthetic joint infections: a review of diagnostic modalities, current treatments, and future directions. J Knee Surgery 33:119–131

    Google Scholar 

  • Shunmugaperumal, Tamilvanan, (2010) Biofilm eradication and prevention: a pharmaceutical approach to medical device infections. ISBN 10: 0470479965 ISBN 13: 9780470479964

  • Singh BN, Singh HB, Singh A, Singh BR, Mishra A, Nautiyal CS (2012) Lagerst roemia species a fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiol 158(2):529–538

    CAS  Google Scholar 

  • Singh R, Ray P, Das A, Sharma M (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermis biofilms. J Antimicrob Chemother 65:1955–1958

    CAS  PubMed  Google Scholar 

  • Song Z, Kong KF, Wu H, Maricic N, Ramalingam B, Priestap H, Schneper L, Quirke JME, Høiby N, Mathee K (2010) Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine 17:1040–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speranza B, Corbo MR (2017) The impact of biofilms on food spoilage. The Microbiological Quality of Food, Woodhead Publishing Series in Food Science, Technology and Nutrition 259–282.

  • Srey S, Jahid IK, Ha S (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585

    Google Scholar 

  • Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, Zhou D (2013) Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Futur Microbiol 8:877–886

    CAS  Google Scholar 

  • Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209

    CAS  PubMed  Google Scholar 

  • Thanner S, Drissner D, Walsh F (2016) Antimicrobial resistance in agriculture. mBio 7(2):e02227-15. https://doi.org/10.1128/mBio.02227-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang STJ, Gwynne PJ, Gallagher MP, Simpson AHRW (2018) The biofilm eradication activity of acetic acid in the management of periprosthetic joint infection. Bone Joint Res 7(08):517–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283

    PubMed  PubMed Central  Google Scholar 

  • Verderosa AD, Totsika M, Fairfull-Smith KE (2019) Bacterial biofilm eradication agents: a current review. Front Chem 7:824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(01):317–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins RR, Smith TC, Bonomo RA (2016) On the path to untreatable infections: colistin use in agriculture and the end of ‘last resort’ antibiotics. Expert Rev Antiinfect Ther 14(9):785–788

    CAS  Google Scholar 

  • Wolcott RD, Ehrlich GD (2008) Biofilms and chronic infections. JAMA 299(22):2682–2684

    CAS  PubMed  Google Scholar 

  • Wolfmeier H, Pletzer D, Sarah C, Mansour REW (2018) New perspectives in biofilm eradication. ACS Infect Diseas 4(2):93–106

    CAS  Google Scholar 

  • Wood TK (2016) Combatting bacterial persister cells. Biotechnol and Bioeng 113(3):476–483

    CAS  Google Scholar 

  • Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79(23):7116–7121

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2014) Global status report on noncommunicable diseases 2014. World Health Organization. No. WHO/NMH/NVI/15.1

  • Wuijts S, van den Berg HH, Miller J, Abebe L, Sobsey M, Andremont A, Medlicott KO, van Passel MW, de Roda Husman AM (2017) Towards a research agenda for water, sanitation and antimicrobial resistance. J Water Health 15(2):175–184

    PubMed  Google Scholar 

  • Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine 13(07):2281–2301

    CAS  PubMed  Google Scholar 

  • Zhang L, Chiang WC, Gao Q, Givskov M, Tolker-Nielsen T, Yang L, Zhang G (2012) The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms. Microbiol 158(12):3014–3019

    CAS  Google Scholar 

  • Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorgan 8(3):425

    CAS  Google Scholar 

  • Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, Chen YS, Zhang T, Gillings MR, Su JQ (2017) Continental-scale pollution of estuaries with antibiotic re-sistance genes. Nat Microbiol 2:16270

    CAS  PubMed  Google Scholar 

  • Zuberi A, Misba L, Khan AU (2017) CRISPR interference (CRISPRi) inhibition of luxS gene expression in E. coli: an approach to inhibit biofilm. Front Cell Infect Microbiol 7:214

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arshad.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J., Tarar, S.M., Gul, I. et al. Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech 11, 169 (2021). https://doi.org/10.1007/s13205-021-02707-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02707-w

Keywords

Navigation