Skip to main content
Log in

Genome-wide selective sweep analysis of the high-altitude adaptability of yaks by using the copy number variant

  • Short Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The domestic yak (Bos grunniens) from the Qinghai–Tibet Plateau is an important animal model in high-altitude adaptation studies. Here, we performed the genome-wide selective sweep analysis to identify the candidate copy number variation (CNV) for the high-altitude adaptation of yaks. A total of 531 autosomal CNVs were determined from 29 yak genome-wide resequencing data (15 high- and 14 low-altitude distributions) by using a CNV caller with a CNV identification interval > 5 kb, CNV silhouette score > 0.7, and minimum allele frequency > 0.05. Most high-frequency CNVs were located at the exonic (44.63%) and intergenic (46.52%) regions. In accordance with the results of the selective sweep analysis, 7 candidate CNVs were identified from the interaction of the top 20 CNVs with highest divergence from the FST and VST between the low (LA) and high (HA) altitudes. Five genes (i.e., GRIK4, IFNLR1, LOC102275985, GRHL3, and LOC102275713) were also annotated from the seven candidate CNVs and their upstream and downstream ranges at 300 kb. GRIK4, IFNLR1, and LOC102275985 were enriched in five known signal pathways, namely, glutamatergic synapse, JAK–STAT signaling pathway, cytokine–cytokine receptor interaction, neuroactive ligand–receptor interaction, and olfactory transduction. These pathways are involved in the environmental adaptability and various physiological functions of animals, especially the physiological regulation under a hypoxic environment. The results of this study advanced the understanding of CNV as an important genomic structure variant type that contributes to HA adaptation and helped further explain the molecular mechanisms underlying the altitude adaptability of yaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abuín JM, Pichel JC, Pena TF, Amigo J (2015) BigBWA: approaching the burrows-wheeler aligner to big data technologies. Bioinformatics 31(24):4003–4005. https://doi.org/10.1093/bioinformatics/btv506

    Article  CAS  Google Scholar 

  • Antunes G, Simoes de Souza FM (2016) Olfactory receptor signaling. Methods Cell Biol 132:127–145. https://doi.org/10.1016/bs.mcb.2015.11.003

    Article  CAS  Google Scholar 

  • Arora V, Pecoraro V, Aller MI, Román C, Paternain AV, Lerma J (2018) Increased Grik4 gene dosage causes imbalanced circuit output and human disease-related behaviors. Cell Rep 23(13):3827–3838. https://doi.org/10.1016/j.celrep.2018.05.086

    Article  CAS  Google Scholar 

  • Busse D, Kudella P, Grüning NM, Gisselmann G, Ständer S, Luger T, Jacobsen F, Steinsträßer L, Paus R, Gkogkolou P, Böhm M, Hatt H, Benecke H (2014) A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Invest Dermatol 134(11):2823–2832. https://doi.org/10.1038/jid.2014.273

    Article  CAS  Google Scholar 

  • Chéret J, Bertolini M, Ponce L, Lehmann J, Tsai T, Alam M, Hatt H, Paus R (2018) Olfactory receptor OR2AT4 regulates human hair growth. Nat Commun 9(1):3624. https://doi.org/10.1038/s41467-018-05973-0

    Article  CAS  Google Scholar 

  • Crosson LA, Kroes RA, Moskal JR, Linsenmeier RA (2009) Gene expression patterns in hypoxic and post-hypoxic adult rat retina with special reference to the NMDA receptor and its interactome. Mol Vis 15:296–311

    CAS  Google Scholar 

  • Dasouki MJ, Wakil SM, Al-Harazi O, Alkorashy M, Muiya NP, Andres E, Hagos S, Aldusery H, Dzimiri N, Colak D (2019) New insights into the impact of genome-wide copy number variations on complex congenital heart disease in Saudi Arabia. OMICS. https://doi.org/10.1089/omi.2019.0165

    Article  Google Scholar 

  • Di Gerlando R, Sutera AM, Mastrangelo S, Tolone M, Portolano B, Sottile G, Bagnato A, Strillacci MG, Sardina MT (2019) Genome-wide association study between CNVs and milk production traits in Valle del Belice sheep. PLoS ONE 14(4):e0215204. https://doi.org/10.1371/journal.pone.0215204

    Article  CAS  Google Scholar 

  • Fragale A, Romagnoli G, Licursi V, Buoncervello M, Del Vecchio G, Giuliani C, Parlato S, Leone C, De Angelis M, Canini I, Toschi E, Belardelli F, Negri R, Capone I, Presutti C, Gabriele L (2017) Antitumor effects of epidrug/IFNα combination driven by modulated gene signatures in both colorectal cancer and dendritic cells. Cancer Immunol Res 5(7):604–616. https://doi.org/10.1158/2326-6066.CIR-17-0080

    Article  CAS  Google Scholar 

  • Gao X, Yuan YY, Lin QF, Xu JC, Wang WQ, Qiao YH, Kang DY, Bai D, Xin F, Huang SS, Qiu SW, Guan LP, Su Y, Wang GJ, Han MY, Jiang Y, Liu HK, Dai P (2018) Mutation of IFNLR1, an interferon lambda receptor 1, is associated with autosomal-dominant non-syndromic hearing loss. J Med Genet 55(5):298–306. https://doi.org/10.1136/jmedgenet-2017-104954

    Article  CAS  Google Scholar 

  • Ge F, Jia C, Chu M, Liang C, Yan P (2019) Copy number variation of the CADM2 gene and its association with growth traits in yak. Animals (Basel) 9(12):pii: E008. https://doi.org/10.3390/ani9121008

    Article  Google Scholar 

  • Goshu HA, Chu M, Xiaoyun W, Pengjia B, Zhi DX, Yan P (2019) Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Mol Genet Genomics 294(3):549–561

    Article  CAS  Google Scholar 

  • Guang-Xin E, Basang WD, Zhu YB (2019) Whole-genome analysis identifying candidate genes of altitude adaptive ecological thresholds in yak populations. J Anim Breed Genet 136(5):371–377. https://doi.org/10.1111/jbg.12403

    Article  CAS  Google Scholar 

  • Hashimoto R, Kakigi R, Miyamoto Y, Nakamura K, Itoh S, Daida H, Okada T, Katoh Y (2020) JAK-STAT-dependent regulation of scavenger receptors in LPS-activated murine macrophages. Eur J Pharmacol 871:172940. https://doi.org/10.1016/j.ejphar.2020.172940

    Article  CAS  Google Scholar 

  • He J, Gao Y, Wu G, Lei X, Zhang Y, Pan W, Yu H (2018) Molecular mechanism of estrogen-mediated neuroprotection in the relief of brain ischemic injury. BMC Genet 19(1):46. https://doi.org/10.1186/s12863-018-0630-y

    Article  CAS  Google Scholar 

  • Hemann EA, Green R, Turnbull JB, Langlois RA, Savan R, Gale M Jr (2019) Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nat Immunol 20(8):1035–1045. https://doi.org/10.1038/s41590-019-0408-z

    Article  CAS  Google Scholar 

  • Huang T, Cheng S, Feng Y, Sheng Z, Gong Y (2018) A copy number variation generated by complicated organization of PCDHA gene cluster is associated with egg performance traits in Xinhua E-strain. Poult Sci 97(10):3435–3445. https://doi.org/10.3382/ps/pey236

    Article  CAS  Google Scholar 

  • Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Geneties 132(2):583–589

    CAS  Google Scholar 

  • Jia C, Wang H, Li C, Wu X, Zan L, Ding X, Guo X, Bao P, Pei J, Chu M, Liang C, Yan P (2019) Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics 20(1):376. https://doi.org/10.1186/s12864-019-5759-1

    Article  Google Scholar 

  • Kim YE, Choi HC, Lee IC, Yuk DY, Lee H, Choi BY (2016) 3-Deoxysappanchalcone promotes proliferation of human hair follicle dermal papilla cells and hair growth in C57BL/6 mice by modulating WNT/β-catenin and STAT signaling. Biomol Ther (Seoul) 24(6):572–580. https://doi.org/10.4062/biomolther.2016.183

    Article  CAS  Google Scholar 

  • Krolewski RC, Lin B, Stampfer S, Packard A, Schwob JE (2020) A group of olfactory receptor alleles that encode full length proteins are down-regulated as olfactory sensory neurons mature. Sci Rep 10(1):1781. https://doi.org/10.1038/s41598-020-58779-w

    Article  CAS  Google Scholar 

  • Lan D, Xiong X, Ji W, Li J, Mipam TD, Ai Y, Chai Z (2018a) Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs. Genetica 146(2):151–160

    Article  CAS  Google Scholar 

  • Lan D, Xiong X, Mipam TD, Fu C, Li Q, Ai Y, Hou D, Chai Z, Zhong J, Li J (2018b) Genetic diversity, molecular phylogeny, and selection evidence of Jinchuan yak revealed by whole-genome resequencing. G3 (Bethesda) 8(3):945–952. https://doi.org/10.1534/g3.118.300572

    Article  CAS  Google Scholar 

  • Liu A, He F, Shen L, Liu R, Wang Z, Zhou J (2019) Convergent degeneration of olfactory receptor gene repertoires in marine mammals. BMC Genomics 20(1):977. https://doi.org/10.1186/s12864-019-6290-0

    Article  Google Scholar 

  • Livanova LM, Luk’ianova LD, Torshin VI (1993) The effect of long-term adaptation to hypoxia on the open-field behavioral reactions in rats with different types of behavior. Zh Vyssh Nerv Deiat Im I P Pavlova 43(4):808–817

    CAS  Google Scholar 

  • Ma ZJ, Zhong JC, Han JL, Xu JT, Liu ZN, Bai WL (2013) Research progress on molecular genetic diversity of the yak (Bos grunniens). Yi Chuan 35(2):151–160

    Article  CAS  Google Scholar 

  • Madsen SS, Winther SST, Bollinger RJ, Steiner U, Larsen MH (2019) Differential expression of olfactory genes in Atlantic salmon (Salmo salar) during the parr–smolt transformation. Ecol Evol 9(24):14085–14100. https://doi.org/10.1002/ece3.5845

    Article  Google Scholar 

  • Minelli A, Congiu C, Ventriglia M, Bortolomasi M, Bonvicini C, Abate M, Sartori R, Gainelli G, Gennarelli M (2016) Influence of GRIK4 genetic variants on the electroconvulsive therapy response. Neurosci Lett 626:94–98

    Article  CAS  Google Scholar 

  • Morris R, Kershaw NJ, Babon JJ (2018) The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 27(12):1984–2009. https://doi.org/10.1002/pro.3519

    Article  CAS  Google Scholar 

  • Peterson ST, Kennedy EA, Brigleb PH, Taylor GM, Urbanek K, Bricker TL, Lee S, Shin H, Dermody TS, Boon ACM, Baldridge MT (2019) Disruption of type III interferon (IFN) genes Ifnl2 and Ifnl3 recapitulates loss of the type III IFN receptor in the mucosal antiviral response. J Virol. https://doi.org/10.1128/JVI.01073-19

    Article  Google Scholar 

  • Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, Cao C, Hu Q, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin HA, Qian X, Lang Y, Zhou R, Wang L, Wang K, Xia J, Liao S, Pan S, Lu X, Hou H, Wang Y, Zang X, Yin Y, Ma H, Zhang J, Wang Z, Zhang Y, Zhang D, Yonezawa T, Hasegawa M, Zhong Y, Liu W, Zhang Y, Huang Z, Zhang S, Long R, Yang H, Wang J, Lenstra JA, Cooper DN, Wu Y, Wang J, Shi P, Wang J, Liu J (2012) The yak genome and adaptation to life at high altitude. Nat Genet 44(8):946–949. https://doi.org/10.1038/ng.2343

    Article  CAS  Google Scholar 

  • Quinn DP, Kolar A, Harris SA, Wigerius M, Fawcett JP, Krueger SR (2019) The stability of Glutamatergic synapses is independent of activity level, but predicted by synapse size. Front Cell Neurosci 13:291

    Article  CAS  Google Scholar 

  • Rao S, Kay Y, Herring BE (2019) Tiam1 is critical for Glutamatergic synapse structure and function in the hippocampus. J Neurosci 39(47):9306–9315

    Article  Google Scholar 

  • Ren D, Bi Y, Xu F, Niu W, Zhang R, Hu J, Guo Z, Wu X, Cao Y, Huang X, Yang F, Wang L, Li W, Xu Y, He L, Yu T, He G, Li X (2017) Common variants in GRIK4 and major depressive disorder: an association study in the Chinese Han population. Neurosci Lett 653:239–243. https://doi.org/10.1016/j.neulet.2017.05.071

    Article  CAS  Google Scholar 

  • Samadi A, Ahmad Nasrollahi S, Hashemi A, Nassiri Kashani M, Firooz A (2017) Janus kinase (JAK) inhibitors for the treatment of skin and hair disorders: a review of literature. J Dermatolog Treat. 28(6):476–483. https://doi.org/10.1080/09546634.2016.1277179

    Article  CAS  Google Scholar 

  • Sebe JY, Cho S, Sheets L, Rutherford MA, von Gersdorff H, Raible DW (2017) Ca2+-permeable AMPARs mediate Glutamatergic transmission and excitotoxic damage at the hair cell ribbon synapse. J Neurosci 37(25):6162–6175. https://doi.org/10.1523/JNEUROSCI.3644-16.2017

    Article  CAS  Google Scholar 

  • Signore F, Gulìa C, Votino R, De Leo V, Zaami S, Putignani L, Gigli S, Santini E, Bertacca L, Porrello A, Piergentili R (2019) The role of number of copies, structure, behavior and copy number variations (CNV) of the Y chromosome in male infertility. Genes (Basel). https://doi.org/10.3390/genes11010040

    Article  Google Scholar 

  • Silva CM, Chibucos M, Munro JB, Daugherty S, Coelho MM, Silva CJ (2020) Signature of adaptive evolution in olfactory receptor genes in Cory's Shearwater supports molecular basis for smell in procellariiform seabirds. Sci Rep 10(1):543. https://doi.org/10.1038/s41598-019-56950-6

    Article  CAS  Google Scholar 

  • Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, Coe BP, Baker C (2015) Global diversity, population stratification, and selection of human copy-number variation. Science 349(6253):aab3761

    Article  Google Scholar 

  • Sun Q, Yuan F, Yuan R, Ren D, Zhu Y, Bi Y, Hu J, Guo Z, Xu F, Niu W, Ma G, Wu X, Yang F, Wang L, Li X, Yu T, He L, He G (2019) GRIK4 and GRM7 gene may be potential indicator of venlafaxine treatment reponses in Chinese of Han ethnicity. Medicine (Baltimore) 98(19):e15456. https://doi.org/10.1097/MD.0000000000015456

    Article  CAS  Google Scholar 

  • Ustinova EE, Strekalova NV, Meerson FZ (1989) The effect of adaptation to the periodic action of high-altitude hypoxia on the emotional behavior of rats. Zh Vyssh Nerv Deiat Im I P Pavlova 39(6):1112–1115

    CAS  Google Scholar 

  • Wakisaka N, Miyasaka N, Koide T, Masuda M, Hiraki-Kajiyama T, Yoshihara Y (2017) An adenosine receptor for olfaction in fish. Curr Biol 27(10):1437–1447. https://doi.org/10.1016/j.cub.2017.04.014(e4)

    Article  CAS  Google Scholar 

  • Wang X, Zheng Z, Cai Y, Chen T, Li C, Fu W, Jiang Y (2017) (2018) CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience 6(12):1–12. https://doi.org/10.1093/gigascience/gix115

    Article  CAS  Google Scholar 

  • Wang ECE, Dai Z, Ferrante AW, Drake CG, Christiano AM (2019a) A Subset of TREM2+ dermal macrophages secretes Oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24(4):654–669. https://doi.org/10.1016/j.stem.2019.01.011(e6)

    Article  CAS  Google Scholar 

  • Wang X, Cao X, Wen Y, Ma Y, Elnour IE, Huang Y, Lan X, Chaogetu B, Hu L, Chen H (2019b) Associations of ORMDL1 gene copy number variations with growth traits in four Chinese sheep breeds. Arch Anim Breed 62(2):571–578. https://doi.org/10.5194/aab-62-571-2019

    Article  Google Scholar 

  • Yue X, Liang Y, Liang Y, Li F (2016) Comprehensive investigation of nucleotide diversity in yaks. Anim Genet 47(6):752–755

    Article  CAS  Google Scholar 

  • Zhang L, Sun B, Yu Q, Ji Q, Xie P, Li H, Wang L, Zhou Y, Li Y, Huang C, Liu X (2016) The breed and sex effect on the carcass size performance and meat quality of yak in different muscles. Korean J Food Sci Anim Resour 36(2):223–229. https://doi.org/10.5851/kosfa.2016.36.2.223

    Article  Google Scholar 

  • Zhang RQ, Wang JJ, Zhang T, Zhai HL, Shen W (2019) Copy-number variation in goat genome sequence: a comparative analysis of the different litter size trait groups. Gene 696:40–46. https://doi.org/10.1016/j.gene.2019.02.027

    Article  CAS  Google Scholar 

  • Zhang R, Wang P, Yu S, Hansbro P, Wang H (2020) Computerized screening of G-protein coupled receptors to identify and characterize olfactory receptors. J Toxicol Environ Health A 5:1–11. https://doi.org/10.1080/15287394.2019.1709305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Open Project Program of State Key Laboratory of Barley and Yak Gemplasm Resources and Genetics Improvement (Tibet Academy of Agricultural and Animal Husbandry Sciences (TAAAS)), Lhasa Tibet 850002, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Guang-Xin.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guang-Xin, E., Yang, BG., Zhu, YB. et al. Genome-wide selective sweep analysis of the high-altitude adaptability of yaks by using the copy number variant. 3 Biotech 10, 259 (2020). https://doi.org/10.1007/s13205-020-02254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02254-w

Keywords

Navigation