Skip to main content

Advertisement

Log in

Analysis of differentially expressed genes and pathways associated with male sterility lines in watermelon via bulked segregant RNA-seq

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Genic male sterility (GMS) is a common and important trait, which is widely used for the production of hybrid seeds. However, the molecular mechanism of GMS in watermelon remains poorly understood. In this study, we comparatively analyzed the transcriptome profiles of sterile and fertile floral buds using the bulked segregant analysis (BSA) and transcriptome sequencing (RNA-seq). A total of 2507 differentially expressed genes (DEGs) including 593 up-regulated and 1914 down-regulated, were identified to be related to male sterility in watermelon line Se18. Gene ontology (GO) analysis showed that 57 GO terms were significantly enriched, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed plant hormone signal transduction, glycolysis/gluconeogenesis, starch and sucrose metabolism, plant–pathogen interaction, phenylpropanoid biosynthesis pathways were obviously enriched. Furthermore, the efficiency of the RNA-seq analysis was validated by quantitative real-time PCR (qRT-PCR). Among the DEGs, some valuable candidate genes involved in pollen development were identified, such as gene Cla000029, a bHLH transcription factor and homologous to MS1 in Arabidopsis. Moreover, other DEGs including MYB gene Cla012590 (MYB26), Cla017100 (MYB21), etc., also provide useful information for further understanding the function of key genes involved in pollen development. This study provides new insights into the global network of male sterility in watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7(12):2115–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aarts MGM, Hodge R, Kalantidis K, Florack D, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12(3):615–623

    CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argyros RD, Mathews DE, Chiang Y-H, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20(8):2102–2116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atanassova B (2000) Functional male sterility in tomato (Lycopersicon esculentum Mill.) and its application in hybrid seed production. Acta Physiol Plant 22(3):221–225

    Google Scholar 

  • Cecchetti V (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20(7):1760–1774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89(7):1133–1144

    CAS  PubMed  Google Scholar 

  • Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D (2011) Male Sterile 2 encodes a Plastid-Localized Fatty Acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157(2):842–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen G, Cao B, Lei J (2015) Transcriptional profiling analysis of genic male sterile–fertile Capsicum annuum reveal candidate genes for pollen development and maturation by RNA-Seq technology. Plant Cell Tissue Organ Culture (PCTOC) 122:465–476

    CAS  Google Scholar 

  • Cheng H, Qin LJ, Lee S, Fu XD, Richards DE, Cao DN et al (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131(5):1055–1064

    CAS  PubMed  Google Scholar 

  • Cheng H, Song SS, Xiao LT, Soo HM, Cheng ZW, Xie DX, Peng JR (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genetics 5(3):e1000440

    PubMed  PubMed Central  Google Scholar 

  • Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot 60(11):3133–3142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    CAS  PubMed  Google Scholar 

  • De Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ (2009) A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21(2):507–525

    PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol Cb 21(9):365–373

    Google Scholar 

  • Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Moller BL, Preuss D (2009) CYP704B1 is a long-chain fatty acid ω-Hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151(2):574–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42(3):315–328

    CAS  PubMed  Google Scholar 

  • Dukowic-Schulze S, Harris A, Li J, Sundararajan A, Mudge J, Retzel EF, Pawlowski WP, Chen C (2014) Comparative transcriptomics of early meiosis in Arabidopsis and Maize. J Genet Genomics 41(3):139–152

    PubMed  Google Scholar 

  • Dun X, Zhou Z, Xia S, Wen J, Fu T (2011) BnaC.Tic40, a plastid inner membrane translocon originating from. Plant J 68(3):532–545

    CAS  PubMed  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker W, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8(2):155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang ZY, Peitian S, Liu LM, Yang LM, Hou AF, Wang XW et al (1995) Preliminary study on the inheritance of male sterility in cabbage line 79–399-438. Acta Hort 402:414–417

    Google Scholar 

  • Fang WP, Zhao FA, Sun Y, Xie DY, Sun L, Xu ZZ et al (2015) Transriptomic profiling reveals complex molecular regulation in cotton genic male sterile mutant Yu98-8A. PLoS ONE 10(9):e0133425

    PubMed  PubMed Central  Google Scholar 

  • Feys BJ, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6(5):751–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19(2):485–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard C, Moffatt BA, Blacker M, Laloue M (1998) Male sterility associated with APRT deficiency in Arabidopsis thaliana results from a mutation in the gene APT1. Mol Gen Genet Mgg 257(3):348–353

    CAS  PubMed  Google Scholar 

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57(11):876–891

    PubMed  PubMed Central  Google Scholar 

  • Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S (2014) Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet 10(5):e1004384

    PubMed  PubMed Central  Google Scholar 

  • Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z (2011) Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics 12(1):454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Zhang Y, Hui M, Cheng Y, Zhang E, Xu Z (2016) Transcriptome sequencing and de novo analysis of a recessive genic male sterile line in cabbage (Brassica oleracea L. var. capitata). Mol Breed 36(8):117–131

    Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49(3–4):373–385

    CAS  PubMed  Google Scholar 

  • Hamdi S, Teller G, Louis J-P (1987) Master regulatory genes, auxin levels, and sexual organogeneses in the dioecious plant Mercurialis annua. Plant Physiol 85(2):393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han YK, Wang XY, Zhao FY, Gao S, Wei AM, Chen ZW et al (2018) Transriptomic analysis of differentially expressed genes in flower-buds of genetic male sterile and wild type cucumber by RNA sequencing. Physiol Mol Biol Plants 24:359–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higginson T, Li SF, Parish RW (2010) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35(2):177–192

    Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5(11):R85

    PubMed  PubMed Central  Google Scholar 

  • Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131(3):1270–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18(11):3073–3087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409(6823):1060–1063

    CAS  PubMed  Google Scholar 

  • Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430(6997):356–360

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(suppl 1):277–280

    Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17(1):22–31

    CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72(3):427–441

    CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    PubMed  PubMed Central  Google Scholar 

  • Kley FKVD (1954) Male sterility and its importance in breeding heterosis varieties. Euphytica 3(2):117–124

    Google Scholar 

  • Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE 9(2):e90612

    PubMed  PubMed Central  Google Scholar 

  • Koski LB, Gray MW, Lang BF, Burger G (2005) AutoFACT: an automatic functional annotation and classification tool. BMC Bioinf 6(1):1–11

    Google Scholar 

  • Levitin B, Richter D, Markovich I, Zik M (2008) Arabinogalactan proteins 6 and 11 are required for stamen and pollen function in Arabidopsis. Plant J 56(3):351–363

    CAS  PubMed  Google Scholar 

  • Liu X, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia G, Owen HA, Zhao D (2009) The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. Plant Physiol 151(3):1401–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yeh CT, Tang HM, Dan N, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7(5):e36406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HY, Kun WU, Yang MM, Zhou XA, Zhao YZ (2014) Variation of soluble sugar, starch and plant hormones contents in sesame dominant genic male sterile line during bud development. Chin J Oil Crop Sci 36(2):175–180

    Google Scholar 

  • Liu C, Liu Z, Li C, Zhang Y, Feng H (2016a) Comparative transcriptome analysis of fertile and sterile buds from a genetically male sterile line of Chinese cabbage. Vitro Cell Dev Biol-Plant 52(2):130–139

    Google Scholar 

  • Liu QC, Lan YP, Wen CL, Zhao H, Wang J, Wang YQ (2016b) Transcriptome sequencing analyses between the cytoplasmic male sterile line and its maintainer line in welsh onion (Allium fistulosum L.). Int J Mol Sci 17(7):1058

    PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46(6):984–1008

    CAS  PubMed  Google Scholar 

  • Nakajima M, Yamaguchi I, Kizawa S, Murofushi N, Takahashi N (1991) Semi-quantification of GAX and GA4 in male-sterile anthers of rice byradioimmunoassay. Plant Cell Physiol 32(4):511–513

    CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140(2):411–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31(1):1–12

    PubMed  Google Scholar 

  • Park JE, Kim YS, Yoon HK, Park CM (2007) Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Sci 172(1):150–157

    CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, T-fF C (2009) Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins. Science (New York, NY) 324(5930):1068

    CAS  Google Scholar 

  • Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25(4):399–406

    CAS  PubMed  Google Scholar 

  • Perez-Prat E, Campagne MML (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7(5):199–203

    CAS  PubMed  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40(6):979–995

    CAS  PubMed  Google Scholar 

  • Qu CM, Fu FY, Liu M, Zhao HY, Liu C, Li JN et al (2015) Comparative transcriptome analysis of recessive male sterility (RGMS) in sterile and Fertile Brassica napus lines. PLoS ONE 10(12):e0144118

    PubMed  PubMed Central  Google Scholar 

  • Rhee SJ, Seo M, Jang YJ, Cho S, Lee GP (2015) Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics 16(1):914

    PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    CAS  PubMed  Google Scholar 

  • Rieu I, Wolters-Arts M, Derksen J, Mariani C, Weterings K (2003) Ethylene regulates the timing of anther dehiscence in tobacco. Planta 217(1):131–137

    CAS  PubMed  Google Scholar 

  • Sheng Y, Yudan W, Shiqi J, Yazhong J, Peng J, Feishi L (2017) Mapping and preliminary analysis of ABORTED MICROSPORES (AMS) as the candidate gene underlying the male sterility (MS-5) mutant in melon (Cucumis melo L.). Front Plant Sci 8:902

    PubMed  PubMed Central  Google Scholar 

  • Shin B, Choi G, Yi H (2010) AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant J 30(1):23–32

    Google Scholar 

  • Shukla A, Sawhney V (1993) Metabolism of dihydrozeatin in floral buds of wild-type and a genic male sterile line of rapeseed (Brassica napus L.). J Exp Bot 44(9):1497–1505

    CAS  Google Scholar 

  • Shukla A, Sawhney V (1994) Abscisic acid: one of the factors affecting male sterility in Brassica napus. Physiol Plant 91(3):522–528

    CAS  Google Scholar 

  • Skoog F, Miller C (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp 11(21):118

    CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ethylene-insensitive3 and ethylene-response-factor1. Genes Dev 12(23):3703–3714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23(3):1000–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2010) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J Cell Mol Biol 33(2):413–423

    Google Scholar 

  • Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34(4):519–528

    CAS  PubMed  Google Scholar 

  • Stintzi A (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci 97(19):10625–10630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su AG, Song W, Xing JF, Zhao YX, Zhang RY, Li CH et al (2015) Identification of genes potentially associated with the fertility instability of S-type cytoplasm male sterility in maize via bulked segregant RNA-Seq. PLoS ONE 11(9):e0163489

    Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) AUX/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16(2):533–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJ, Harren FJ (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131(3):1228–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vizcay-Barrena G (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57(11):2709

    CAS  PubMed  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    CAS  PubMed  Google Scholar 

  • Wang WJ, Wang FJ, Sun XT, Liu FL, Liang ZR (2013) Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae). Planta 237(4):1123–1133

    CAS  PubMed  Google Scholar 

  • Wang YQ, Yang XZ, Mo YL, Zheng JQ, Zhang Y, Ma JX et al (2016) Analysis of the changes in antioxidant enzymes activities and endogenous hormones contents in watermelon male sterile line Se18 during bud development. Acta Horticulturae Sinica 43(11):2161–2172 (in Chinese)

    Google Scholar 

  • Wijeratne AJ, Zhang W, Sun Y, Liu W, Albert R, Zheng Z, Oppenheimer DG, Zhao D, Ma H (2007) Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J 52(1):14–29

    CAS  PubMed  Google Scholar 

  • Wilson ZA, Da-Bing Z (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 5:5

    Google Scholar 

  • Wu K, Liu H, Zuo Y, Yang M, Zhao Y (2014) Histological and transcriptional characterization of a novel recessive genic male sterility mutant in sesame (Sesamum indicum L.). Acta Physiol Plant 36(2):421

    CAS  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22(1):91–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D (2014) ABORTED MICROSPORES Acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26(4):1544–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Dong C, Yu J, Liu W, Jiang C, Liu J, Hu Q, Fang X, Wei W (2013) Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genomics 14(1):26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007a) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19(11):3530–3548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Xu Z, Song J, Conner K, Barrena GV, Wilson ZA (2007b) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19(2):534–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Li J, Pei M, Gu H, Chen Z, Qu LJ (2007c) Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep 26(2):219–228

    CAS  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci USA 107(13):6100–6105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yang JQ, Zhang JS, Zhang Y, Ma JX, Hou P (2005a) Studies on botanical character and genetic model of Se18 watermelon male sterile material. China Cucurbits Vegetables 5:3–6 (in Chinese)

    Google Scholar 

  • Zhang X, Wang M, Ma JX, Zhang JS, Yang JQ (2005b) Cytological studies on recessive nuclease male sterile lines in watermelon. J Northwest A&F Univ (Nat Sci Ed) 33(1):71–74 (in Chinese)

    Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133(16):3085–3095

    CAS  PubMed  Google Scholar 

  • Zhao D, Ma H (2000) Male fertility: a case of enzyme identity. Curr Biol 10(24):904–907

    Google Scholar 

  • Zhou Z, Xiaoling D, Xia S, Shi D, Qin M, Yi B et al (2011) BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. J Exp Bot 63(5):2041–2058

    PubMed  PubMed Central  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in tapetal development and function 1 is essential for another development and tapetal function for microspore maturation in Arabidopsis. Plant J 55(2):266–277

    CAS  PubMed  Google Scholar 

  • Zou C, Jiang W, Yu D (2010) Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61:3901–3914

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Modern Agro-industry Technology Research System of China (No. CARS-25), the Scientific Startup Foundation for Doctors of Northwest A&F University (No. Z109021604), the Basal Research Foundation of Northwest A&F University (No. Z109021612), the Science and Technological of Shaanxi Province (No. 2015KTTSNY03-04) and the Key Project of Shaanxi Province (2017ZDXM-NY-025).

Author information

Authors and Affiliations

Authors

Contributions

YW, CW and XZ conceived and designed the experiments. YW and XY sequenced data analysis, and qPCR validation of gene expression. YW wrote the paper. ZW, RZ, JC and YY participated in the data analysis. HL, YZ, JM and VY provided helpful advice on data analysis. YM and CW revised the paper. XZ provided the materials, revised the paper and supervised the research.

Corresponding authors

Correspondence to Chunhua Wei or Xian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, X., Yadav, V. et al. Analysis of differentially expressed genes and pathways associated with male sterility lines in watermelon via bulked segregant RNA-seq. 3 Biotech 10, 222 (2020). https://doi.org/10.1007/s13205-020-02208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02208-2

Keywords

Navigation