Skip to main content
Log in

Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Hyaluronic acid (HA) is a biopolymer used in several industries. There is increasing global demand. HA is normally produced on a large scale using attenuated strains of group C streptococci that are pathogenic and fastidious. Accordingly, it is of interest to use a “generally recognized as safe” (GRAS) organism such as Bacillus subtilis for HA production. Here, we report an engineered B. subtilis strain named WmB that produces different molecular weights (MW) and titers of HA at different temperatures. The faster the bacteria grew, the lower the MW of HA produced and the higher the titer. The MW of HA obtained ranged from 6.937 MDa at 47 °C to 0.392 MDa at 32 °C. At 32 °C, the HA titer reached 3.65 ± 0.13 g/L. We have engineered a strain that can produce high-molecular-weight and medium-molecular-weight HA at different growth temperatures. This GRAS B. subtilis strain can be applied in industry and provides a new strategy for production of HA with different molecular weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Luozhong S, Guo Z, Yu H, Stephanopoulos G (2017) Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotechnol J. https://doi.org/10.1002/biot.201700191

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien LJ, Lee CK (2007a) Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog 23(5):1017–1022

    CAS  PubMed  Google Scholar 

  • Chien LJ, Lee CK (2007b) Hyaluronic acid production by recombinant Lactococcus lactis. Appl Microbiol Biotechnol 77(2):339–346

    Article  CAS  PubMed  Google Scholar 

  • Chong B, Blank L, McLaughlin R, Nielsen L (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66(1):199–232

    Article  CAS  PubMed  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  CAS  PubMed  Google Scholar 

  • Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Ma XW, Huang CF, Zhao YH, Li M (2012) Folding and convoluting manipulation for the treatment of distal radius fractures: a report of 78 cases. Zhongguo Gu Shang 25(9):755–756

    PubMed  Google Scholar 

  • Hilbert DW, Piggot PJ (2004) Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68(2):234–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiwa H, Tsuchida N (1986) New shuttle vectors for Escherichia coli and Bacillus subtilis. The nucleotide sequence of pHY300PLK and some properties in relation to transformation. Jpn J Genet 61:515–528

    Article  CAS  Google Scholar 

  • Jia Y, Zhu J, Chen X, Tang D, Su D, Yao W, Gao X (2013) Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol 132:427–431

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Kang Z, Yuan P, Du G, Chen J (2016) Production of specific molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng 35:21–30

    Article  CAS  PubMed  Google Scholar 

  • Kawai F, Hara H, Takamatsu H, Watabe K, Matsumoto K (2006) Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet Syst 81(2):69–76

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact 10(1):99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao ZC, Chen RR (2007) Recombinant synthesis of hyaluronan by Agrobacterium sp. Biotechnol Prog 23(5):1038–1042

    CAS  PubMed  Google Scholar 

  • Overkamp W, Kuipers OP (2015) Transcriptional profile of Bacillus subtilis sigF-mutant during vegetative growth. PLoS One 10(10):e0141553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzberg LI, Helmann JD (2008) Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol 190(23):7797–7807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Harbor

    Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Tlapak-Simmons VL, Kempner ES, Baggenstoss BA, Weigel PH (1998) The active streptococcal hyaluronan synthases (HASs) contain a single HAS monomer and multiple cardiolipin molecules. J Biol Chem 273(40):26100–26109

    Article  CAS  PubMed  Google Scholar 

  • Tlapak-Simmons VL, Baggenstoss BA, Clyne T, Weigel PH (1999) Purification and lipid dependence of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis. J Biol Chem 274(7):4239–4245

    Article  CAS  PubMed  Google Scholar 

  • Triscott MX, van de Rijn I (1986) Solubilization of hyaluronic acid synthetic activity from streptococci and its activation with phospholipids. J Biol Chem 261(13):6004–6009

    CAS  PubMed  Google Scholar 

  • Weigel PH, Baggenstoss BA (2012) Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. Glycobiology 22(10):1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westbrook AW, Moo-Young M, Chou CP (2016) Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol 82(16):4876–4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westbrook AW, Ren X, Moo-Young M, Chou CP (2018) Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng 115(1):216–231

    Article  CAS  PubMed  Google Scholar 

  • Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71(7):3747–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu XC, Lee W, Tran L, Wong SL (1991) Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol 173(16):4952–4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Guo X, Luan Y (2005) The application on different molecular weight of sodium hyaluronate. Food Drug 12:1–3

    Google Scholar 

  • Yu H, Stephanopoulos G (2008) Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng 10(1):24–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tianjin Research Program of Application Foundation (16JCTPJC50100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, G., Zhao, X. et al. Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis. 3 Biotech 9, 225 (2019). https://doi.org/10.1007/s13205-019-1749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1749-x

Keywords

Navigation