Skip to main content
Log in

Bio-production of novel water-soluble yellow pigment from Aspergillus sp. and exploring its sustainable textile applications

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In the present study, 40 pigment-producing microbes were isolated from various soil sources. Among these, a novel water-soluble yellow pigment-producing fungal isolate (MBYP1) was identified as Aspergillus sp. through ITS gene sequencing. The maximum pigment yield (UA430nm, 12.45 ± 0.5 g/l) was obtained when strain MBYP1 was cultured under optimum conditions (28 °C and pH 5.5 under static condition). Subsequently, the pigment was purified through gel chromatography and high-performance liquid chromatography (HPLC). Characterization of purified pigment through UV–Vis and liquid chromatography–mass spectrometry (LC–MS) reveal maximum absorbance at 430 nm and molecular mass of 301 m/z, respectively. Further, the pigment exhibited a maximum dyeing capacity of up to 80% irrespective of mordant. Toxicity evaluation of purified pigment with zebra fish model system reported an IC50 value of 710 µg/mL. Pigment antioxidant ability was established by DPPH (35.7 µg/mL) and phosphomolybdenum assay (226.61 mg/g) thus ascertaining improvised light fastness of dyed fabric. Moreover, lack of antimicrobial activity (up to 40 µg/mL) improves pigment bio-degradability. In collective, the novel yellow pigment from Aspergillus sp. MBYP1 strain was found to be an eco-friendly alternative to synthetic dye for potential applications in textile industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad WA, Ahmad WY, Zakaria ZA, Yusof NZ (2012) Application of bacterial pigments as colorant. In: Application of bacterial pigments as colorant. Springer, Berlin, pp 57–74

    Chapter  Google Scholar 

  • Akilandeswari P, Pradeep BV (2017) Aspergillus terreus KMBF1501 a potential pigment producer under submerged fermentation. Int J Pharm Pharm Sci 9:38–43

    Article  CAS  Google Scholar 

  • Bae JT, Sinha J, Park JP, Song CH, Yun JW (2000) Optimization of submerged culture conditions for exo-biopolymer production by Paecilomyces japonica. J Microbiol Biotechnol 10(4):482–487

    CAS  Google Scholar 

  • Balraj J, Pannerselvam K, Jayaraman A (2014) Isolation of pigmented marine bacteria Exiguobacterium sp. from peninsular region of India and a study on biological activity of purified pigment. IJSTR 3(3):375–384

    Google Scholar 

  • Blanc PJ, Loret MO, Santerre AL, Pareilleux A, Prome D, Prome JC, Laussac JP, Goma G (1994) Pigments of monascus. J Food Sci 59(4):862–865

    Article  CAS  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199

    Article  CAS  Google Scholar 

  • Couto SR (2009) Dye removal by immobilised fungi. Biotechnol Adv 27(3):227–235

    Article  CAS  Google Scholar 

  • Daroit DJ, Silveira ST, Hertz PF, Brandelli A (2007) Production of extracellular β-glucosidase by Monascus purpureus on different growth substrates. Process Biochem 42(5):904–908

    Article  CAS  Google Scholar 

  • Dufosse L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    Article  CAS  PubMed  Google Scholar 

  • Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–323

    Google Scholar 

  • Geweely NS (2011) Investigation of the optimum condition and antimicrobial activities of pigments from four potent pigment-producing fungal species. J Life Sci 5(9):697–711

    Google Scholar 

  • Ghaheh FS, Khoddami A, Alihosseini F, Jing S, Ribeiro A, Cavaco-Paulo A, Silva C (2017) Antioxidant cosmetotextiles: cotton coating with nanoparticles containing vitamin E. Process Biochem 59:46–51

    Article  CAS  Google Scholar 

  • Gulani C, Bhattacharya S, Das A (2012) Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malays J Microbiol 8(2):116–122

    CAS  Google Scholar 

  • Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol 7(12):1894–1898

    Article  CAS  Google Scholar 

  • Indra Arulselvi P, Umamaheswari S, Ranandkumar Sharma G, Karthik C, Jayakrishna C (2014) Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate. J Food Process Technol 5(292):2

    Google Scholar 

  • Jaja-Chimedza A, Sanchez K, Gantar M, Gibbs P, Schmale M, Berry JP (2017) Carotenoid glycosides from cyanobacteria are teratogenic in the zebrafish (Danio rerio) embryo model. Chemosphere 174:478–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi VK, Attri D, Bala A, Bhushan S (2003) Microbial pigments. Indian J Biotech 2:362–369

    CAS  Google Scholar 

  • Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A (2011) Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules 16(2):1710–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler BE (1995) Electronic structure of carotenoids. ChemInform 26(32):1–12

    Google Scholar 

  • Kumar A, Vishwakarma HS, Singh J, Dwivedi S, Kumar M (2015) Microbial pigments: production and their applications in various industries. Int J Pharm Chem Biol Sci 5:203–212

    CAS  Google Scholar 

  • Lu M, Zhao C, Zhou P, Yu L (2010) Analysis and identification of astaxanthin and its carotenoid precursors from Xanthophyllomyces dendrorhous by high-performance liquid chromatography. Naturforsch C 65(7–8):489–494

    Article  CAS  Google Scholar 

  • Lu F, Liu L, Huang Y, Zhang X, Wang Z (2018) Production of Monascus pigments as extracellular crystals by cell suspension culture. Appl Microbial biotechnol 102(2):677–687

    Article  CAS  Google Scholar 

  • Morales-Oyervides L, Oliveira J, Sousa-Gallagher M, Méndez-Zavala A, Montañez JC (2017) Assessment of the dyeing properties of the pigments produced by Talaromyces spp. J Fungi 3(3):38

    Article  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W (1999) Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74(11):1009–1018

    Article  Google Scholar 

  • Ogugbue CJ, Sawidis T (2011) Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol Res int 1–11

  • Prasain JK, Moore R, Hurst JS, Barnes S, van Kuijk FJ (2005) Electrospray tandem mass spectrometric analysis of zeaxanthin and its oxidation products. J Mass spectrom 40(7):916–923

    Article  CAS  PubMed  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341

    Article  CAS  PubMed  Google Scholar 

  • Rajeendran A, Nulit R, Yien CY, Ibrahim MH, Kalhori N (2017) Isolation and molecular identification of Colletotrichum gloeosporioides from infected peanut seeds. IJPSS 19:1–8

  • Safafar H, Van Wagenen J, Møller P, Jacobsen C (2015) Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 13(12):7339–7356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin—a review. Compr Rev Food Sci Food saf 7(1):29–49

    Article  CAS  Google Scholar 

  • Shahid M, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  • Shen B, Liu HC, Ou WB, Eilers G, Zhou SM, Meng FG, Li CQ, Li YQ (2015) Toxicity induced by basic violet 14, direct red 28 and acid red 26 in zebrafish larvae. J Appl Toxicol 35(12):1473–1480

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Jain A, Panwar S, Gupta D, Khare SK (2005) Antimicrobial activity of some natural dyes. Dyes Pigments 66(2):99–102

    Article  CAS  Google Scholar 

  • Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ (2013) Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand. Mar Bioresour Technol 143:308–314

    Article  CAS  Google Scholar 

  • Thiagarajan P, Nalankilli G (2013) Improving light fastness of reactive dyed cotton fabric with antioxidant and UV absorbers. Indian J Fiber Text Res 48:161–164

    Google Scholar 

  • Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52(8):4669–4678

    Article  CAS  PubMed  Google Scholar 

  • Venil CK, Aruldass CA, Dufossé L, Zakaria ZA, Ahmad WA (2014) Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry—an incisive evaluation. RSC Adv 4(74):39523–39529

    Article  CAS  Google Scholar 

  • Walton K, Gantar M, Gibbs PD, Schmale MC, Berry JP (2014) Indole alkaloids from Fischerella inhibit vertebrate development in the zebrafish (Danio rerio) embryo model. Toxins 6(12):3568–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AJ, Lowe GL (2018) Carotenoids—antioxidant properties. Antioxidants 7:28–31

    Article  PubMed Central  Google Scholar 

  • Zhong K, Gao XL, Xu ZJ, Gao H, Fan S, Yamaguchi I, Li LH, Chen RJ (2011) Antioxidant activity of a novel Streptomyces strain Eri 12 isolated from the Rhizosphere of Rhizoma curcumae longae. Curr Res Bacteriol 4(2):63–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to the Defense Research and Development Organization (DRDO), for financial support through Phase II project DRDO-BU CLS, Coimbatore, India. We also acknowledge DFRL, Mysore for great support.

Author information

Authors and Affiliations

Authors

Contributions

PP and KK designed the experiment. SP performed the experiments, analyzed the data and prepared the manuscript.

Corresponding author

Correspondence to P. Premasudha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiyarajan, S., Premasudha, P. & Kadirvelu, K. Bio-production of novel water-soluble yellow pigment from Aspergillus sp. and exploring its sustainable textile applications. 3 Biotech 8, 398 (2018). https://doi.org/10.1007/s13205-018-1424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1424-7

Keywords

Navigation