Skip to main content
Log in

Assessment and optimization of xylanase production using co-cultures of Bacillus subtilis and Kluyveromyces marxianus

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Co-cultures of Bacillus subtilis and Kluyveromyces marxianus were investigated in submerged fermentation for xylanase production at shake-flask scale. Xylanase production markedly increased when arabinose, xylose, or hazelnut shells were used as the single carbon source. Maximal xylanase of 49.5 IU/mL was achieved with 4% B. subtilis, 4% K. marxianus, 40% solid load of hazelnut shells, and pH 7.0. Overall, xylanase was enhanced by 4.4-fold compared to initial un-optimized monoculture production and 2.8-fold compared to initial un-optimized co-cultured production, after optimization by response surface method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46

    Article  CAS  Google Scholar 

  • Azeri C, Tamer U, Oskay M (2010) Thermoactive cellulase-free xylanase production from alkaliphilic Bacillus strains using various agro-residues and their potential in biobleaching of kraft pulp. Afr J Biotechnol 9:63–72

    CAS  Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  CAS  PubMed  Google Scholar 

  • Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383. https://doi.org/10.1016/S0734-9750(00)00041-0

    Article  CAS  PubMed  Google Scholar 

  • Bocchini D, Alves-Prado H, Baida L et al (2002) Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process Biochem 38:727–731. https://doi.org/10.1016/S0032-9592(02)00207-8

    Article  CAS  Google Scholar 

  • Butt M, Tahir-Nadeem M, Ahmad Z, Sultan M (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46:22–31

    CAS  Google Scholar 

  • Cao Y, Meng D, Lu J, Long J (2008) Statistical optimization of xylanase production by Aspergillus niger AN-13 under submerged fermentation using response surface methodology. Afr J Biotechnol 7:631–638

    CAS  Google Scholar 

  • Chapla D, Divecha J, Madamwar D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49:361–369. https://doi.org/10.1016/j.bej.2010.01.012

    Article  CAS  Google Scholar 

  • Da Silva S, Afschar A (1994) Microbial production of xylitol from d-xylose using Candida tropicalis. Bioprocess Eng 11:129–134

    Article  CAS  Google Scholar 

  • Deshpande S, Bhotmange M, Chakrabarti T, Shastri P (2008) and xylanase by Trichoderma reesei (QM 9414 mutant), Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth (Eichhornia crassipes). Indian J Chem Technol 15:449–456

    CAS  Google Scholar 

  • Dobrev G, Pishtiyski I, Stanchev V, Mircheva R (2007) Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour Technol 98:2671–2678

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Kirchner O, Muñoz-Aguilar M, Pérez-Villalva R, Huitrón-Vargas C (2002) Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production. Appl Biochem Biotechnol 98–100:1105–1114

    Article  PubMed  Google Scholar 

  • Ghanem KM (1992) Single cell protein production from beet pulp by mixed culture. Qatar Univ Sci J 12:85–88

    CAS  Google Scholar 

  • Gupta S, Kuhad R, Bhushan B, Hoondal G (2001) Improved xylanase production from a haloalkalophilic Staphylococcus sp. SG-13 using inexpensive agricultural residues. World J Microbiol Biotechnol 17:5–8. https://doi.org/10.1023/A:1016691205518 doi

    Article  CAS  Google Scholar 

  • Gupta S, Kapoor M, Sharma KK et al (2008) Production and recovery of an alkaline exo-polygalacturonase from Bacillus subtilis RCK under solid-state fermentation using statistical approach. Bioresour Technol 99:937–945. https://doi.org/10.1016/j.biortech.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  • Gusakov A, Kondratyeva E, Sinitsyn A (2011) Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int J Anal Chem. https://doi.org/10.1155/2011/283658

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Correa M, Tengerdy R (1998) Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol Lett 20:45–47

    Article  CAS  Google Scholar 

  • Irfan M, Nadeem M, Syed Q, Baig S (2012) Effect of medium composition on xylanase production by Bacillus subtilis using various agricultural wastes. Am Eurasian J Agric Environ Sci 12(5):561–565

    CAS  Google Scholar 

  • Irfan M, Nadeem M, Syed Q (2013) Purification and kinetics study of thermostable cellulase free xylanase from Bacillus subtilis. Protein Pept Lett 20:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Jeyakumar RM, Rajesh L (2012) Effect of various physical parameters for the production of the enzyme xylanase from mixed culture of Bacillus polymyxa and Cellulomonas uda. Asian J Biomed Pharm Sci 2:72–74

    Google Scholar 

  • Jia C, Huang W, Abdel-Samie M (2011) Dough rheological, mixolab mixing, and nutritional characteristics of almond cookies with and without xylanase. J Food Eng 105:227–232. https://doi.org/10.1016/j.jfoodeng.2011.02.023

    Article  CAS  Google Scholar 

  • Ling Ho H, Heng KL (2015) Xylanase production by Bacillus subtilis in cost-effective medium using soybean hull as part of medium composition under submerged fermentation (SmF) and solid state fermentation (SsF). J Biodivers Biopros Dev 2:143

    Google Scholar 

  • Markets and Markets h (2014) Market research reports. Marketsandmarkets.com. Accessed 11 Dec 2014

  • Milagres A, Santos E, Piovan T, Roberto I (2004) Production of xylanase by Thermoascus aurantiacus from sugar cane bagasse in an aerated growth fermentor. Process Biochem 39:1387–1391

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Nadia H, Amal M, Abeer A (2010) Xylanase production by Streptomyces lividans (NRC) and it’s application on waste paper. Aust J Basic 4:1358–1368

    Google Scholar 

  • Niladevi KN, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour Technol 99(11):4583–4589

    Article  CAS  PubMed  Google Scholar 

  • Okafor U, Okochi V, Onyegeme-okerenta B, Nwodo-Chinedu S (2007) Xylanase production by Aspergillus niger ANL 301 using agro-wastes. Afr J Biochem Res 6:1710–1714

    CAS  Google Scholar 

  • Panda T, Bisaria V, Ghose T (1987) Effect of culture phasing and a polysaccharide on production of xylanase by mixed culture of Trichoderma reesei D16 and Aspergillus wentii Pt 2804. Biotechnol Bioeng 30:868–874

    Article  CAS  PubMed  Google Scholar 

  • Pütün A, Özcan A, Pütün E (1999) Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: yields and structural analysis of bio-oil. J Anal Appl Pyrolysis 52:33–49. https://doi.org/10.1016/S0165-2370(99)00044-3

    Article  Google Scholar 

  • Rajoka M (2007) Kinetic parameters and thermodynamic values of β-xylosidase production by Kluyveromyces marxianus. Bioresour Technol 98:2212–2219. https://doi.org/10.1016/j.biortech.2006.08.029

    Article  CAS  PubMed  Google Scholar 

  • Renge V (2012) Enzyme synthesis by fermentation method: a review. Sci Rev Chem Commun 2:585–590

    CAS  Google Scholar 

  • Rifaat H, Nagieb Z, Ahmed Y (2006) Production of xylanases by Streptomyces species and their bleaching effect on rice straw pulp. Appl Ecol Environ Res 4:151–160

    Article  Google Scholar 

  • Thomas L, Joseph A, Arumugam M, Pandey A (2013) Production, purification, characterization and over-expression of xylanases from actinomycetes. Indian J Exp Biol 51:875–884

    CAS  PubMed  Google Scholar 

  • Uzuner S, Cekmecelioglu D (2014) Hydrolysis of hazelnut shells as a carbon source for bioprocessing applications and fermentation. Int J food Eng 10:799–808

    Article  CAS  Google Scholar 

  • Xin F, He J (2013) Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol 135:309–315. https://doi.org/10.1016/j.biortech.2012.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Scientific Council of Research at METU, (Project no: BAP-03-14-2011-001). The authors also acknowledge the Department of Food Engineering for providing the experimentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Cekmecelioglu.

Ethics declarations

Conflict of interest

All the authors in this study mutually agree for submitting our manuscript to 3 Biotech and declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yardimci, G.O., Cekmecelioglu, D. Assessment and optimization of xylanase production using co-cultures of Bacillus subtilis and Kluyveromyces marxianus. 3 Biotech 8, 290 (2018). https://doi.org/10.1007/s13205-018-1315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1315-y

Keywords

Navigation