Skip to main content

Advertisement

Log in

Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This exertion is part of a liable approach for the advancement of nanotechnology and nanoscience to scrutinize the thermal and rheological aspects of the nanofluids. The conformist heat transport fluids are broadly reported to be one of the notable reasons of the reduced enactment of heat transport tools, boosting the energy charges. For this concern to be stable, nanofluids have been familiarized as probable proxies to the conformist fluids because of their intensify aptitude of heat transport coefficient. Here, the up-front goal is to investigate the aspect of nonlinear radiated and chemical reaction with aspects of Arrhenius activation energy in Carreau nanofluid. Additionally, mixed convection, MHD, and new mass flux theory is explored. The framed system is envisioned numerically via bvp4c. Temperature field intensifies against enhanced values of radiation and thermophoresis parameters, respectively. Concentration has conflicted performance for escalating activation energy and Brownian motion parameters, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(u,v,w\) :

Velocity components

\(x,y,z\) :

Space coordinates

\(t\) :

Time

\(\nu\) :

Kinematic viscosity

\(\Gamma\) :

Material rate constant

\(n\) :

Power law index

\(\sigma\) :

Electrical conductivity

\(B_{0}\) :

Magnetic strength

\(\rho_{f}\) :

Fluid density

\(g\) :

Gravity

\((\rho c)_{f}\) :

Heat capacity of fluid

\(\xi_{T}\) :

Thermal expansion coefficient

\(T_{\infty }\) :

Nanofluid ambient temperature

\(C_{\infty }\) :

Nanofluid ambient concentration

\(D_{B}\) :

Brownian diffusion coefficient

\(D_{T}\) :

Thermophoresis diffusion coefficient

\(q_{r}\) :

Radiative heat flux

\(k^{ * }\) :

Mean absorption coefficient

\(\sigma^{ * }\) :

Stefan-Boltzmann constant

\(k_{r}\) :

Reaction rate

\(m( - 1 < m < 1)\) :

Fitted rate constant

\(E_{A}\) :

Activation energy

\(\kappa\) :

Boltzmann constant

\(U_{w} (x,\,t),V_{w} (y,\,t)\) :

Stretching velocities

\(\xi_{C}\) :

Solutal expansion coefficient

\(T\) :

Nanofluid temperature

\(T_{w}\) :

Wall temperature

\(C\) :

Nanoparticles concentration

\(\alpha\) :

Thermal diffusivity

\(\tau\) :

Effective heat capacity ratio

\(k\) :

Thermal conductivity

\(a,b,\beta\) :

Positive constants

MHD:

Magnetohydrodynamics

ODEs:

Ordinary differential equations

PDEs:

Partial differential equations

HAM:

Homotopy analysis method

\(\eta\) :

Dimensionless variable

\(We\) :

Local Weissenberg number

\(M\) :

Magnetic parameter

\(S\) :

Unsteadiness parameter

\(\lambda^{*}\) :

Thermal buoyancy parameter

\(N^{*}\) :

Buoyancy ratio parameter

\(R_{d}\) :

Thermal radiation parameter

\(\theta_{w}\) :

Temperature ratio parameter

\(N_{b}\) :

Brownian motion parameter

\(N_{t}\) :

Thermophoresis parameter

\(\Pr\) :

Prandtl number

\(Le\) :

Lewis number

\(E_{A}\) :

Activation energy parameter

\(\Lambda_{1}\) :

Reaction rate parameter

\(\Lambda_{2}\) :

Temperature difference parameter

\(\tau_{xz} ,\tau_{yz}\) :

Surface shear stresses

\(C_{fx} ,C_{fy}\) :

Skin friction coefficients

\(Nu_{x}\) :

Local Nusselt number

\({\text{Re}}_{x}\) :

Local Reynolds number

\(f\) :

Dimensionless velocities

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

References

  • Anwar MS (2020) Numerical study of transport phenomena in a nanofluid using fractional relaxation times in Buongiorno model. Phys Scr 95:035211

    Article  CAS  Google Scholar 

  • Bestman AR (1991) Radiative heat transfer to flow of a combustible mixture in a vertical pipe. Int J Energy Res 15:179–184

    Article  CAS  Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  • Chamkha AJ, Aly AM, Mansour MA (1970) Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects. Chem Eng Commun 2010:846–858

    Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME 231:99–106

    CAS  Google Scholar 

  • Gireesha BJ, Mahanthesh B, Makinde OD, Muhammad T (2018) Effects of Hall current on transient flow of dusty fluid with nonlinear radiation past a convectively heated stretching plate. Defect Diff Forum 237:352–363

    Article  Google Scholar 

  • Gireesha BJ, Sampathkumar PB (2018) Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. J Mol Liq 256:139–147

    Article  CAS  Google Scholar 

  • Hayat T, Rashid M, Alsaedi A (2019) Nonlinear radiative heat flux in Oldroyd-B nanofluid flow with Soret and Dufour effects. Appl Nanoscience. https://doi.org/10.1007/s13204-019-01028-y

    Article  Google Scholar 

  • Hosseinzadeh K, Gholinia M, Jafari B, Ghanbarpour A, Olfian H, Ganji DD (2018) Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium. Heat Transf. https://doi.org/10.1002/htj.21404

    Article  Google Scholar 

  • Hsiao KL (2017) To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy 130:486–499

    Article  Google Scholar 

  • Irfan M, Khan M (2019) Simultaneous impact of nonlinear radiative heat flux and Arrhenius activation energy in flow of chemically reacting Carreau nanofluid. Appl Nanoscience. https://doi.org/10.1007/s13204-019-01012-6

    Article  Google Scholar 

  • Irfan M, Khan M, Khan WA, Ayaz M (2018) Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport. Phy Letters A 382:1992–2002

    Article  CAS  Google Scholar 

  • Irfan M, Khan WA, Khan M, Gulzar MM (2019) Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection. J Phys Chem Solids 125:141–152

    Article  CAS  Google Scholar 

  • Irfan M, Khan M, Khan WA, Rafiq K (2020a) Physical aspects of shear thinning/thickening behavior in radiative flow of magnetite Carreau nanofluid with nanoparticle mass flux conditions. Appl Nanoscience. https://doi.org/10.1007/s13204-020-01323-z

    Article  Google Scholar 

  • Irfan M, Rafiq K, Khan WA, Khan M (2020b) Numerical analysis of steady Carreau nanofluid flow with variable conductivity. Appl Nanoscience. https://doi.org/10.1007/s13204-020-01331-z

    Article  Google Scholar 

  • Khan MI, Afzal S, Hayat T, Waqas M, Alsaedi A (2020) Activation energy for the Carreau-Yasuda nanomaterial flow: Analysis of the entropy generation over a porous medium. J Mol Liq 297:111905

    Article  CAS  Google Scholar 

  • Khan M, Irfan M, Khan WA (2018) Thermophysical properties of unsteady 3D flow of magneto Carreau fluid in presence of chemical species: A numerical approach. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-0964-4

    Article  Google Scholar 

  • Khan M, Irfan M, Khan WA, Alshomrani AS (2017) A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation. Results Phy 7:2692–2704

    Article  Google Scholar 

  • Kumar PBS, Mahanthesh B, Gireesha BJ, Shehzad SA (2018) Quadratic convective flow of radiated nano-Jeffrey liquid subject to multiple convective conditions and Cattaneo-Christov double diffusion. Appl Math Mech 39:1331–1326

    Google Scholar 

  • Mahanthesh B, Gireesha BJ, Gorla RSR (2017) Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating. J Ass Arab Uni Basic Appl Sci 23:75–84

    Google Scholar 

  • Mahanthesh B, Shashikumar NS, Gireesha BJ, Animasaunc IL (2019) Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat. J Comput Design Eng. 6:551–561

    Article  Google Scholar 

  • Mahanthesh B, Shehzad SA, Ambreen T, Khan SU (2020) Significance of Joule heating and viscous heating on heat transport of MoS 2-Ag hybrid nanofluid past an isothermal wedge. J Ther Ana Calorimetry. https://doi.org/10.1007/s10973-020-09578-y

    Article  Google Scholar 

  • Mustafa M, Khan JA, Hayat T, Alsaedi A (2017) Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int J Heat Mass Transf 108:1340–1346

    Article  CAS  Google Scholar 

  • Narayana PVS, Tarakaramu N, Makinde OD, Venkateswarlu B, Sarojamma G (2018) MHD stagnation point flow of viscoelastic nanofluid past a convectively heated stretching surface. Comput Anal Heat Transf fluids Solids 387:106–120

    Google Scholar 

  • Qi C, Tang J, Ding Z, Yan Y, Guo L, Ma Y (2019) Effects of rotation angle and metal foam on natural convection of nanofluids in a cavity under an adjustable magnetic field. Commun. Heat Mass Transf Int. https://doi.org/10.1016/j.icheatmasstransfer.2019.104349

    Article  Google Scholar 

  • Ramesh GK (2020) Analysis of active and passive control of nanoparticles in viscoelastic nanomaterial inspired by activation energy and chemical reaction. Physica A Statistical Mech Appl 550:123964

    Article  CAS  Google Scholar 

  • Rashid M, Alsaedi A, Hayat T, Ahmed B (2019) Magnetohydrodynamic flow of Maxwell nanofluid with binary chemical reaction and Arrhenius activation energy. Appl Nanoscience. https://doi.org/10.1007/s13204-019-01143-w

    Article  Google Scholar 

  • Sajid T, Sagheer M, Hussain S, Bilal M (2018) Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Adv 10(1063/1):5019218

    Google Scholar 

  • Sharidan S, Mahmood T, Pop I (2016) Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet. Int J Appl Mech Eng 11:647–654

    Google Scholar 

  • Sheremet MA, Pop I, Rosca NC (2016) Magnetic field effect on unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno's mathematical model. J Taiwan Inst Chem Eng 61:211–222

    Article  CAS  Google Scholar 

  • Waqas M, Jabeen S, Hayat T, Shehz SA, Alsaedi A (2020) Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. Int Commu Heat Mass Transf. https://doi.org/10.1016/j.icheatmasstransfer.2019.104401

    Article  Google Scholar 

  • Wen D, Ding Y (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26:855–864

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Irfan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Anwar, M.S., Rashid, M. et al. Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation. Appl Nanosci 10, 4403–4413 (2020). https://doi.org/10.1007/s13204-020-01498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01498-5

Keywords

Navigation