Skip to main content
Log in

Ameliorative symbiosis of Serratia fonticola (S1T1) under salt stress condition enhance growth-promoting attributes of Cucumis sativus L

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Salinity stress is a combination of ionic, osmotic, and oxidative stressors that have a negative impact on crop growth and production. In the present study, experiments were conducted to investigate the role of multi-traits Serratia fonticola (S1T1) on Cucumis sativus L. growing under salinity stress (200 mM). The control plants had stunted growth, while S. fonticola (S1T1) root zone treated plants revealed significantly higher fresh (26.71%) and dry (24.8%) biomass, and improved level of chlorophyll content (25.24%) followed by foliar application of S. fonticola (S1T1) under salt stress. Similarly, increased water potential (15–20%), decreased (14–20%) endogenous abscisic acid (ABA) and lower electrolytic leakage (21–35%) were additional proof of the beneficial impacts of root zone inoculated C. sativus L. under salt stress conditions. Antioxidant analysis revealed a decrease in malondialdehyde (MDA) content (13–31%), H2O2 content (15–36%) and superoxide anion (SOA) (11–32%) while an increase in antioxidant enzymes such as catalase (CAT) (13.2–35.5%) and superoxide dismutase (SOD) (9.61–29.7%). The root zone and foliar application of S. fonticola (S1T1) on cucumber plants improved salt-stress tolerance by up-regulating the transcript accumulation of ion transporter genes HKT1 (2-3-folds), NHX (18.2-folds) and SOS1 (8.2-folds). Conclusively, the symbiotic association of S. fonticola (S1T1) can alleviate the antagonistic effects of salinity stress, improve cucumber plant growth and could be utilized as an eco-friendly biofertilizer or microbial plant biostimulant (MBPs) under salt stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali S, Khan MA, Kim W-C (2018a) Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L. Appl Biol Chem 61(5):575–585

    Article  CAS  Google Scholar 

  • Ali S, Park S-K, Kim W-C (2018b) The pragmatic introduction and expression of microbial transgenes in plants. J Microbiol Biotechnol 28(12):1955–1970

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Maggio A, Bressan RA, Yun D-J (2019) Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci 20(5):1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali B, Wang X, Saleem MH, Hafeez A, Afridi MS, Khan S, Ullah I, Amaral Júnior ATd, Alatawi A, Ali S (2022a) PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11 (3):345

  • Ali S, Moon Y-S, Hamayun M, Khan MA, Bibi K, Lee I-J (2022b) Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J Plant Interact 17(1):705–718

    Article  CAS  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6(1):1–16

    Article  CAS  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y (2015) Biostimulants in horticulture. Sci Hort 196:1–134

    Article  Google Scholar 

  • Dabral S, Saxena SC, Choudhary DK, Bandyopadhyay P, Sahoo RK, Tuteja N, Nath M (2020) Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis 81(2):139–148

    Article  CAS  Google Scholar 

  • Du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14

    Article  CAS  Google Scholar 

  • Efthimiadou A, Katsenios N, Chanioti S, Giannoglou M, Djordjevic N, Katsaros G (2020) Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Botany 104(7):1263–1280

    Article  CAS  Google Scholar 

  • Franzoni G, Cocetta G, Prinsi B, Ferrante A, Espen L (2022) Biostimulants on crops: their impact under Abiotic stress conditions. Horticulturae 8(3):189

    Article  Google Scholar 

  • Gajewska E, Skłodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Giordano M, Petropoulos SA, Rouphael Y (2021) Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11(5):463

    Article  CAS  Google Scholar 

  • Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA, Sheikh TA, Reddy MS, El Enshasy H, Gafur A (2021) Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability 13(5):2856

    Article  CAS  Google Scholar 

  • Haroon U, Khizar M, Liaquat F, Ali M, Akbar M, Tahir K, Batool SS, Kamal A, Chaudhary HJ, Munis MFH (2022) Halotolerant plant growth-promoting rhizobacteria induce salinity tolerance in wheat by enhancing the expression of SOS genes. J Plant Growth Regul 41(6):2435–2448

    Article  CAS  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, Garcia Garrido J (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175(3):554–564

    Article  CAS  PubMed  Google Scholar 

  • Ilyas N, Mazhar R, Yasmin H, Khan W, Iqbal S, Enshasy HE, Dailin DJ (2020) Rhizobacteria isolated from saline soil induce systemic tolerance in wheat (Triticum aestivum L.) against salinity stress. Agronomy 10(7):989

    Article  CAS  Google Scholar 

  • Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65(12):2963–2979

    Article  CAS  PubMed  Google Scholar 

  • Jan FG, Hamayun M, Moon Y-S, Jan G, Shafique M, Ali S (2022) Endophytic aspergillus oryzae reprograms Abelmoschus esculentus L. to higher growth under salt stress via regulation of physiochemical attributes and antioxidant system. Biologia:1–14

  • Jiménez-Mejía R, Medina-Estrada RI, Carballar-Hernández S, Orozco-Mosqueda MdC, Santoyo G, Loeza-Lara PD (2022) Teamwork to survive in hostile soils: Use of Plant Growth-Promoting Bacteria to ameliorate soil salinity stress in crops. Microorganisms 10(1):150

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang S-M, Khan AL, Waqas M, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee I-J (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682

    Article  Google Scholar 

  • Kapadia C, Sayyed RZ, El Enshasy HA, Vaidya H, Sharma D, Patel N, Malek RA, Syed A, Elgorban AM, Ahmad K (2021) Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability 13(15):8369

    Article  CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim K-M, Lee I-J (2019a) Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. BioMed research international 2019

  • Khan MA, Ullah I, Waqas M, Hamayun M, Khan AL, Asaf S, Kang S-M, Kim K-M, Jan R, Lee I-J (2019b) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis 77(1):9–21

    Article  CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang S-M, Kim K-M, Lee I-J (2020) Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS ONE 15(4):e0232228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Al Azawi TNI, Pande A, Mun B-G, Lee D-S, Hussain A, Lee B-H, Yun B-W (2021a) The role of nitric oxide-induced ATILL6 in growth and disease resistance in Arabidopsis thaliana. Front Plant Sci 12:685156

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Hamayun M, Asaf S, Khan M, Yun B-W, Kang S-M, Lee I-J (2021b) Rhizospheric bacillus spp. rescues plant growth under salinity stress via regulating gene expression, endogenous hormones, and antioxidant system of Oryza sativa L. Front Plant Sci 12:1145

    Article  Google Scholar 

  • Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA (2021c) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10(6):1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubi HAA, Khan MA, Adhikari A, Imran M, Kang S-M, Hamayun M, Lee I-J (2021) Silicon and plant growth-promoting Rhizobacteria Pseudomonas psychrotolerans CS51 mitigates salt stress in Zea mays L. Agriculture 11(3):272

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  PubMed  Google Scholar 

  • Menon RR, Kumari S, Viver T, Rameshkumar NJMR (2020) Flavobacterium pokkalii sp. nov., a novel plant growth promoting native rhizobacteria isolated from pokkali rice grown in coastal saline affected agricultural regions of southern India. Kerala 240:126533

    CAS  Google Scholar 

  • Moon Y-S, Ali S (2022a) A fruitful decade of bacterial ACC deaminase biotechnology: a pragmatic approach towards abiotic stress relief in plants.Theoretical and Experimental Plant Physiology:1–21

  • Moon Y-S, Ali S (2022b) Isolation and identification of multi-trait plant growth–promoting rhizobacteria from coastal sand dune plant species of Pohang beach. Folia Microbiol 67(3):523–533

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • Park H-S, Kazerooni EA, Kang S-M, Al-Sadi AM, Lee I-J (2021) Melatonin enhances the tolerance and recovery mechanisms in Brassica juncea (L.) Czern. Under saline conditions. Front Plant Sci 12:593717

    Article  PubMed  PubMed Central  Google Scholar 

  • Preininger C, Sauer U, Bejarano A, Berninger T (2018) Concepts and applications of foliar spray for microbial inoculants. Appl Microbiol Biotechnol 102(17):7265–7282

    Article  CAS  PubMed  Google Scholar 

  • Qi Q, Rose PA, Abrams GD, Taylor DC, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol 117(3):979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Lee I-J (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32(1):22–30

    Article  CAS  Google Scholar 

  • Rahim W, Khan M, Al Azzawi TNI, Pande A, Methela NJ, Ali S, Imran M, Lee D-S, Lee G-M, Mun B-G (2022) Exogenously Applied Sodium Nitroprusside mitigates lead toxicity in Rice by regulating antioxidants and metal stress-related transcripts. Int J Mol Sci 23(17):9729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramezani A, Niazi A, Abolimoghadam AA, Zamani Babgohari M, Deihimi T, Ebrahimi M, Akhtardanesh H, Ebrahimie E (2013) Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. Mol Biotechnol 53(2):189–197

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Mehmood SS, Shah T, Zou X, Yan L, Zhang X, Khan RSA (2019) Applications of molecular markers to develop resistance against abiotic stresses in wheat. Wheat production in changing environments. Springer, pp 393–420

  • Rouphael Y, Colla G (2018) Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1655

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy S, Chakraborty AP, Chakraborty R (2021) Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. Physiol Plant 173(4):1657–1681

    Article  CAS  PubMed  Google Scholar 

  • Safdarian M, Askari H, Shariati JV, Nematzadeh G (2019) Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci Rep 9(1):1–12

    Article  CAS  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2022) Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). J Plant Growth Regul 41(2):647–656

    Article  CAS  Google Scholar 

  • Shabaan M, Asghar HN, Zahir ZA, Zhang X, Sardar MF, Li H (2022) Salt-Tolerant PGPR Confer Salt Tolerance to maize through enhanced soil Biological Health, enzymatic activities, nutrient uptake and antioxidant defense. Front Microbiol 13:901865

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y (2021) Targeting salt stress coping mechanisms for stress tolerance in Brassica: a research perspective. Plant Physiol Biochem 158:53–64

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Soni SK, Patel RP, Kalra A (2013) Technology for improving essential oil yield of Ocimum basilicum L.(sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Ind Crops Prod 45:335–342

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11(6):e0155026

    Article  PubMed  PubMed Central  Google Scholar 

  • Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2018) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 37(11):1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Tan, H., Zhou, S., Deng, Z., He, M., & Cao, L. (2011). Ribosomal-sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biological Control, 59(2):245–254.

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Yasmeen R, Shaheed Siddiqui Z (2017) Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Bot Croatica 76(2):154–162

    Article  CAS  Google Scholar 

  • Zhao C, Zhang H, Song C, Zhu J-K, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. The innovation 1(1):100017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have no financial conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Contributions

SA, and YSM conceived and designed the experiments. SA, MK, and MAK performed the experiments. SA, MAK and MK analyzed the data and interpretation. SA and YSM contributed reagents/materials/analysis tools. SA, and YSM wrote the paper. YSM and SA contributed equally to this work and have the right to list their names first in their CVs. All authors have read and agreed to publish this manuscript.

Corresponding author

Correspondence to Sajid Ali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, YS., Khan, M., Khan, M.A. et al. Ameliorative symbiosis of Serratia fonticola (S1T1) under salt stress condition enhance growth-promoting attributes of Cucumis sativus L. Symbiosis 89, 283–297 (2023). https://doi.org/10.1007/s13199-023-00897-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-023-00897-w

Keywords

Navigation