Skip to main content
Log in

Pocillopora cryptofauna and their response to host coral mortality

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The cryptofauna are the small cryptic organisms that inhabit the interstices of coral colonies and have a great contribution to the biodiversity of the reef. Some of these species are vulnerable to environmental deterioration due to their dependency on living coral. In the 1990s, Culebra Bay, located in the North Pacific of Costa Rica, was considered one of the most important reef areas in the country, with a mean live coral cover over 40%. However, in the last two decades there was a drastic decrease in live coral cover to 5%, due to El Niño events and recurrent harmful phytoplankton blooms. To evaluate the effect of the deterioration of the reef on the cryptofauna, we compare two time periods: before (2003–2004) and after (2013–2014) coral decline. Pocillopora spp. colonies (~20 cm high by ~20 cm wide) were collected and all associated invertebrates removed. Twenty colonies were sampled each period. During the first period, sampled colonies were alive and healthy, whereas a decade later, exposed skeletons of dead colonies were sampled. A total of 3482 invertebrate individuals were found, belonging to 133 species, 72 families, and nine classes. While abundance and diversity were greater during the 2013–2014 period, we hypothesize that this is due to disturbance intensity being intermediate to high. If these conditions are persistent or intensify over time, however, we expect that once all substrate and reef structure is lost, an abrupt decline in cryptofauna abundance and diversity will take place. Reefs with dead corals therefore have a remarkably different composition of the cryptofauna. Obligate commensal fauna were replaced by boring, opportunistic, and facultative species in these habitats. These changes in live coral cover favored an increase in the diversity of organisms, but this enhanced diversity may be temporary as bioerosion reduces dead colonies to skeleton rubble. This change in the cryptofauna community can affect the recovery and sustainability of the reef ecosystem over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaro EJ, Cortés J, Alvarado JJ, Jiménez C, León A, Sánchez-Noguera C, Nivia-Ruiz J, Ruiz-Campos E (2012) Clima y variabilidad climática de la temperatura subsuperfical del mar en Bahía Culebra, Guanacaste, Costa Rica. Rev Biol Trop 60(Supl. 2):159–171

    Google Scholar 

  • Alvarado JJ, Vargas-Castillo R (2012) Invertebrados asociados al coral constructor de arrecifes, Pocillopora damicornis en Playa Blanca, Bahía Culebra, Costa Rica. Rev Biol Trop 60(Supl. 2):77–92

    Google Scholar 

  • Alvarado JJ, Cortés J, Reyes-Bonilla H (2012) Reconstruction of Diadema mexicanum a. Agassiz, 1863 bioerosion impact on three Costa Rican Pacific coral reefs. Rev Biol Trop 60(Suppl. 2):121–132

    Google Scholar 

  • Alvarado JJ, Beita-Jiménez A, Mena S, Fernández-García C, Cortés J, Sánchez-Noguera C, Jiménez C, Guzmán AG (2018) Cuando la conservación no puede seguir el ritmo del desarrollo: Estado de salud de los ecosistemas coralinos del Pacífico Norte de Costa Rica. Rev Biol Tro 66(Supl. 1):280–308. https://doi.org/10.15517/RBT.V66I1.33300

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1046/j.1442-9993.2001.01070.x

    Article  Google Scholar 

  • Apprill A (2020) The role of symbioses in the adaptation and stress responses of marine organisms. Annu Rev Mar Sci 12:291–314. https://doi.org/10.1146/annurev-marine-010419-010641

    Article  Google Scholar 

  • Arias-Godínez G, Jiménez C, Gamboa C, Cortés J, Espinoza M, Alvarado JJ (2019) Spatial and temporal changes of reef fish assemblages on disturbed coral reefs, North Pacific coast of Costa Rica. Mar Ecol 40:e12532. https://doi.org/10.1111/maec.12532

    Article  Google Scholar 

  • Bascompte J, Stouffer DB (2009) The assembly and disassembly of ecological networks. Phil Trans Royal Soc London Biol Sci 364:1781–1788. https://doi.org/10.1098/rstb.2008.0226

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–933. https://doi.org/10.1038/nature02691

    Article  CAS  PubMed  Google Scholar 

  • Boström-Einarsson L, Babcock RC, Bayraktarov E, Ceccarelli D, Cook N, Ferse SCA, Boze H, Harrison P, Hein M, Shaver E, Smith A, Suggett D, Stewart-Sinclair PJ, Vardi T, McLeod IM (2020) Coral restoration – a systematic review of current methods, successes, failures and future directions. PLoS One 15:e0226631. https://doi.org/10.1371/journal.pone.0226631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro P (1976) Brachyuran crabs symbiotic with scleractinian corals: a review of their biology. Micronesica 12:99–110

    Google Scholar 

  • Castro P (1988) Animal symbioses in coral reef communities: a review. Symbiosis 5:161–184

    Google Scholar 

  • Castro P (1996) Eastern Pacific species of Trapezia (Crustacea, Brachyura: Trapeziidae) sibling species symbiotic with reef corals. Bull Mar Sci 58:531–554

    Google Scholar 

  • Clark HL (1940) Eastern Pacific expeditions of the New York zoological society. XXI Notes on Echinoderms from the west coast of Central America Zoologica 25:331–352

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User manual. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Coan EV, Valentich-Scott P (2012) Bivalve seashells of tropical West America. Marine bivalve mollusks from Baja California to Peru. Santa Barbara Museum Natural History, Santa Barbara

  • Coleman MA, Wood G, Filbee-Dexter K, Minne AJP, Goold HD, Vergés A, Marzinelli EM, Steinberg PD, Wernberg T (2020) Restore or redefine: future trajectories for restoration. Front Mar Sci 7:237. https://doi.org/10.3389/fmars.2020.00237

    Article  Google Scholar 

  • Coles S (1980) Species diversity of decapods associated with living and dead reef coral Pocillopora meandrina. Mar Ecol Prog Ser 2:281–291

    Article  Google Scholar 

  • Cortés J, Jiménez CE (2003) Corals and coral reefs of the Pacific of Costa Rica: history, research and status. In: Cortés J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 361–385

    Chapter  Google Scholar 

  • Cortés J, Vargas-Castillo R, Nivia-Ruiz J (2012) Marine biodiversity of Bahía Culebra, Guanacaste, Costa Rica: published records. Rev Biol Trop 60(Suppl 2):39–71

    Google Scholar 

  • Cortés J, Enochs IC, Sibaja-Cordero J, Hernández L, Alvarado JJ, Breedy O, Cruz-Barraza JA, Esquivel-Garrote O, Fernández-García C, Hermosillo A, Kaiser KL, Medina-Rosas P, Morales-Ramírez Á, Pacheco C, Reyes-Bonilla H, Riosmena-Rodríguez R, Sánchez-Noguera C, Zapata FA (2017) Marine biodiversity of eastern tropical Pacific coral reefs. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral reefs of the eastern tropical Pacific: persistence and loss in a dynamic environment. Springer, Berlin, pp 203–250

    Chapter  Google Scholar 

  • Counsell CWW, Donahue MJ, Edwards KF, Franklin EC, Hixon MA (2018) Variation in coral-associated cryptofaunal communities across spatial scales and environmental gradients. Coral Reefs 37:827–840. https://doi.org/10.1007/s00338-018-1709-7

    Article  Google Scholar 

  • Dominici-Arosemena A, Brugnoli-Olivera E, Cortés-Núñez J, Molina-Ureña H, Quesada-Alpízar M (2005) Community structure of eastern Pacific reef fishes (gulf of Papagayo, Costa Rica). Tecnociencia 7:19–41

    Google Scholar 

  • Doo SS, Carpenter RC, Edmunds PJ (2018) Obligate ectosymbionts increase the physiological resilience of a scleractinian coral to high temperature and elevated pCO2. Coral Reefs 37:997–1001. https://doi.org/10.1007/s00338-018-1731-9

    Article  Google Scholar 

  • Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722. https://doi.org/10.1007/s00227-011-1848-7

    Article  Google Scholar 

  • Enochs IC, Hockensmith G (2009) Effects of coral mortality on the community composition of cryptic metazoans associated with Pocillopora damicornis. Proc 11th Int Coral Reef Symp 26:1368–1372

    Google Scholar 

  • Enochs IC, Manzello DP (2012a) Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31:653–661. https://doi.org/10.1007/s00338-012-0886-z

    Article  Google Scholar 

  • Enochs IC, Manzello DP (2012b) Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 2012:94–104. https://doi.org/10.3390/d4010094

    Article  Google Scholar 

  • Enochs IC, Toth LT, Brandtneris VW, Afflerbach JC, Manzello DP (2011) Environmental determinants of motile cryptofauna on an eastern Pacific coral reef. Mar Ecol Prog Ser 438:105–118. https://doi.org/10.3354/meps09259

    Article  Google Scholar 

  • Fauchald K (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Nat Hist Mus LA County Sci Ser 28:1–188

    Google Scholar 

  • Fernández-García C, Cortés J, Alvarado JJ, Nivia-Ruiz J (2012) Physical factors contributing to the benthic dominance of the alga Caulerpa sertularioides (Caulerpaceae, Chlorophyta) in the upwelling Bahía Culebra, North Pacific of Costa Rica. Rev Biol Trop 60(Suppl. 2):93–107

    Google Scholar 

  • Fonseca AC, Dean HK, Cortés J (2006) Non-colonial coral macroborers as indicators of coral reef stress in the South Pacific of Costa Rica. Rev Biol Trop 54:101–115

    Article  CAS  PubMed  Google Scholar 

  • Goral F, Schellenberg J (2018) Goeveg: functions for community data and ordinations. R package version 0.4.2. https://CRAN.R-project.org/package=goeveg

  • Haig J (1960) The Porcellanidae (Crustacea: Anomura) of the eastern Pacific. Allan Hancock Pac Exped 24:1–440

    Google Scholar 

  • Head CEI, Bonsall MB, Koldewey H, Pratchett MS, Speight M, Rogers AD (2015) High prevalence of obligate coral-dwelling decapods on dead corals in the Chagos archipelago, Central Indian Ocean. Coral Reefs 34:05–915. https://doi.org/10.1007/s00338-015-1307-x

    Article  Google Scholar 

  • Hernández L, Reyes-Bonilla H, Balart EF (2010) Efecto del blanqueamiento del coral por baja temperatura en los crustáceos decápodos asociados a arrecifes del suroeste del golfo de California. Rev Mex Biodiv 81:S113–S119. https://doi.org/10.22201/ib.20078706e.2010.0.214

    Article  Google Scholar 

  • Hiatt RW, Strasburg DW (1960) Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol Monogr 30:65–127

  • Holthuis LB (1951) A general revision of the Palaemonidae (Crustacea: Decapoda: Natantia) of the Americas. I. the subfamilies Euryrhynchinae and Pontoniinae. Occ Pap Allan Hancock Found 11:1–332

    Google Scholar 

  • Holthuis LB (1952) A general revision of the Palaemonidae (Crustacea: Decapoda: Natantia) of the Americas, part. II. The subfamily Palaemoninae. Occ Pap Allan Hancock Found 12:1–396

    Google Scholar 

  • Jiménez C (2001) Arrecifes y ambientes coralinos de Bahía Culebra, Pacífico de Costa Rica: aspectos biológicos, económico-recreativos y de manejo. Rev Biol Trop 49(Supl 2):215–231

    PubMed  Google Scholar 

  • Jiménez C (2007) Arrecifes coralinos, ¿víctimas de los cambios? Ambientico 171:5–7

    Google Scholar 

  • Keen AM (1971) Sea shells of tropical West America: marine mollusks from Baja California to Peru. Stanford University, Stanford

    Google Scholar 

  • Kim W, Abele LG (1988) The snapping shrimp genus Alpheus from the eastern Pacific (Decapoda: Caridea: Alpheidae). Smithson Contr Zool 454:1–119

    Article  Google Scholar 

  • Knudsen JW (1967) Trapezia and Tetralia (Decapoda, Brachyura, Xanthidae) as obligate ectoparasites of pocilloporid and acroporid corals. Pac Sci 21:51–57

    Google Scholar 

  • Kramer MJ, Bellwood DR, Bellwood O (2014) Benthic Crustacea on coral reefs: a quantitative survey. Mar Ecol Prog Ser 511:105–116. https://doi.org/10.3354/meps10953

    Article  Google Scholar 

  • Lecchini D, Nakamura Y (2013) Use of chemical cues by coral reef animal larvae for habitat selection. Aquat Biol 19(3):231–238. https://doi.org/10.3354/ab00532

    Article  Google Scholar 

  • Lecchini D, Miura T, Lecellier G, Banaigs B, Nakamura Y (2014) Transmission distance of chemical cues from coral habitats: implications for marine larval settlement in context of reef degradation. Mar Biol 161(7):1677–1686. https://doi.org/10.1007/s00227-014-2451-5

    Article  CAS  Google Scholar 

  • Lieske E, Myers R (1994) Coral reef fishes—indo-Pacific and Caribbean. Harper Collins, London

    Google Scholar 

  • McKeon CS, Moore JM (2014) Species and size diversity in protective services offered by coral guard-crabs. PeerJ 2:e574. https://doi.org/10.7717/peerj.574

    Article  PubMed  PubMed Central  Google Scholar 

  • Montoya JM, Solé RV (2002) Small world patterns in food webs. J Theor Biol 214:405–412. https://doi.org/10.1006/jtbi.2001.2460

    Article  PubMed  Google Scholar 

  • Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature 442:259–264. https://doi.org/10.1038/nature04927

    Article  CAS  PubMed  Google Scholar 

  • Nelson HR, Kuempel CD, Altieri AH (2016) The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 7:e01399. https://doi.org/10.1002/ecs2.1399

    Article  Google Scholar 

  • Noorbaini Samsuri A, Preslie Kikuzawa Y, Taira D, Qin Sam S, Ting Sim W, Lionel Ng CS, Afiq-Rosli L, Delon Wee TW, Kee Ng N, Chong Toh T, Ming Chou L (2018) The effectiveness of Trapezia cymodoce in defending its host coral Pocillopora acuta against corallivorous Drupella. Mar Biol 65:70. https://doi.org/10.1007/s00227-018-3330-2

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHM, Szoecs E, Wagner H (2019) Vegan: community ecology package. R package version 2:5–6 https://CRAN.R-project.org/package=vegan

    Google Scholar 

  • Owada M (2007) (2007) functional morphology and phylogeny of the rock-boring bivalves Leiosolenus and Lithophaga (Bivalvia: Mytilidae): a third functional clade. Mar Biol 150:853–860. https://doi.org/10.1007/s00227-006-0409-y

    Article  Google Scholar 

  • Owada M (2015) Functional phenotypic plasticity of the endolithic mytilid Leiosolenus curtus (Lischke, 1874) (Bivalvia: Mytilidae). Molluscan Res 35:188–195. https://doi.org/10.1080/13235818.2015.1052129

    Article  Google Scholar 

  • Plaisance L, Knowlton AN, Paulay AG, Meyer AC (2009) Reef associated crustacean fauna: biodiversity estimates using semiquantitative sampling and DNA barcoding. Coral Reefs 28:977–986. https://doi.org/10.1007/s00338-009-0543-3

    Article  Google Scholar 

  • Pratchett MS (2001) Influence of coral symbionts on feeding preferences of crown-of-thorns starfish Acanthaster planci in the western Pacific. Mar Ecol Prog Ser 214:111–119. https://doi.org/10.3354/meps214111

    Article  Google Scholar 

  • Pratchett MS, Vytopil E, Parkes P (2000) Coral crabs influence the feeding patterns of crown-of-thorns starfish. Coral Reefs 19:36. https://doi.org/10.1007/s003380050223

    Article  Google Scholar 

  • Printrakoon C, Yeemin T, Valentich-Scott P (2016) Ecology of endolithic bivalve mollusks from Ko Chang, Thailand. Zool Stud 55:50. https://doi.org/10.6620/ZS.2016.55-50

    Article  Google Scholar 

  • R Development Core Team (2019) R: a language and environment for statistical computing. Retrieved from http://www.r-project.org/

  • Reaka-Kudla M (1997) The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla M, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, Washington, D.C, pp 83–108

    Google Scholar 

  • Rixen T, Jiménez C, Cortés J (2012) Impact of upwelling events on the sea water chemistry in the Gulf of Papagayo (Culebra Bay), Costa Rica. Rev Biol Trop 60(Suppl 2):187–195

    Google Scholar 

  • Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91. https://doi.org/10.3354/meps07531

    Article  Google Scholar 

  • Rouzé H, Lecellier G, Mills SC, Planes S, Berteaux-Lecellier V, Stewart H (2014) Juvenile Trapezia spp. crabs can increase juvenile host coral survival by protection from predation. Mar Ecol Prog Ser 515:151–159. https://doi.org/10.3354/meps10970

    Article  Google Scholar 

  • Salgado-Barragán P, Hendrickx M (2010) Clave ilustrada para la identificación de los estomatópodos (Crustacea:Hoplocarida) del Pacífico oriental. Rev Mex Biod 81:1–49. https://doi.org/10.22201/ib.20078706e.2010.0.224

    Article  Google Scholar 

  • Sánchez-Noguera C, Jiménez C, Cortés J (2018a) Desarrollo costero y ambientes marino-costeros en Bahía Culebra, Guanacaste, Costa Rica. Rev Biol Trop 66(Supl 1):S309–S327. https://doi.org/10.15517/rbt.v66i1.33301

    Article  Google Scholar 

  • Sánchez-Noguera C, Stuhldreier I, Cortés J, Jiménez C, Morales Á, Wild C, Rixen T (2018b) Natural Ocean acidification at Papagayo upwelling system (North Pacific Costa Rica): implications for reef development. Biogeosci 15:2349–2360. https://doi.org/10.5194/bg-15-2349-2018

    Article  CAS  Google Scholar 

  • Skoglund C (1992) Additions to the Panamic province gastropod (Mollusca) literature 1971 to 1992. Festivus 24:1–169

    Google Scholar 

  • Skoglund C (2002) Panamic province molluscan literature: additions and changes from 1971 through 2001. III Gastropoda Festivus 32:201–286

    Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (2002) Chemical cues for surface colonization. J Chem Ecol 28(10):1935–1951. https://doi.org/10.1023/A:1020789625989

    Article  CAS  PubMed  Google Scholar 

  • Stella JS, Munday PL, Jones GP (2011a) Effects of coral bleaching on the obligate coral-dwelling crab Trapezia cymodoce. Coral Reefs 30:719–727. https://doi.org/10.1007/s00338-011-0748-0

    Article  Google Scholar 

  • Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011b) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Ann Rev 49:43–104

    Google Scholar 

  • Stewart HL, Holbrook SJ, Schmitt RJ, Brooks AJ (2006) Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs 25:609–615. https://doi.org/10.1007/s00338-006-0132-7

    Article  Google Scholar 

  • Stewart HL, Price NN, Holbrook SJ, Schmitt RJ, Brooks AJ (2013) Determinants of the onset and strength of mutualistic interactions between branching corals and associate crabs. Mar Ecol Prog Ser 493:155–163. https://doi.org/10.3354/meps10525

    Article  Google Scholar 

  • Stier AC, McKeon CS, Osenberg CW, Shima JS (2010) Guard crabs alleviate deleterious effects of vermetid snails on a branching coral. Coral Reefs 29:1019–1022. https://doi.org/10.1007/s00338-010-0663-9

    Article  Google Scholar 

  • Tóth E, Duffy JE (2005) Coordinated group response to nest intruders in social shrimp. Biol Lett 1(1):49–52. https://doi.org/10.1098/rsbl.2004.0237

    Article  PubMed  PubMed Central  Google Scholar 

  • Wee SYC, Sam SO, Sim WT, Ng CSL, Taira D, Afiq-Rosli L, Kikuzawa YP, Toh TC, Chou LM (2019) The role of in situ coral nurseries in supporting mobile invertebrate epifauna. J Nat Conserv 50:125710. https://doi.org/10.1016/j.jnc.2019.125710

    Article  Google Scholar 

  • Williams RJ, Berlow EL, Dunne JA, Barabási AL, Martínez ND (2002) Two degrees of separation in complex food webs. Proc Natl Acad Sci U S A 99:12913–12916. https://doi.org/10.1073/pnas.192448799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wizemann A, Nandini SD, Stuhldreier I, Sánchez-Noguera C, Wisshak M, Westphal H, Rixen T, Wild C, Reymond CE (2018) Rapid bioerosion in a tropical upwelling coral reef. PLoS One 13:e0202887. https://doi.org/10.1371/journal.pone.0202887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present investigation would not have been possible without the support of the following people and institutions: C. Fernández-García, J. Nivia-Ruiz, K. García, J.C. Azofeifa, S. Mena, A. Beita, Deep Blue Diving, Ecodesarrollo Papagayo S.A., Instituto Costarricense de Turismo (ICT), and Centro de Investigación en Ciencias del Mar y Limnología (CIMAR). We are grateful to B. Chomitz, for his review and comments that improved this paper.

Funding

This project was financed through the fund 1312–01 of the Foundation of the University of Costa Rica.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JJA, CSM.

Methodology and field work: JJA, CSM.

Data analysis: All authors.

Original draft: JJA, CSM, SFM.

Review and edition of the final draft: all authors.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan José Alvarado.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Moya, C., Fabregat-Malé, S., Vargas-Castillo, R. et al. Pocillopora cryptofauna and their response to host coral mortality. Symbiosis 84, 91–103 (2021). https://doi.org/10.1007/s13199-021-00771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00771-7

Keywords

Navigation