Skip to main content
Log in

AMF components from a microbial inoculum fail to colonize roots and lack soil persistence in an arable maize field

  • Short Communication
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are root obligate biotrophs that provide the host with nutrients and pathogen protection, in exchange of photosynthetic products. A decline in AMF diversity can reduce the overall benefit for host plants. A sustainable strategy to re-establish AMF diversity is to supply the target soil with AMF inoculants. After inoculation, it is essential to verify whether the inoculants successfully colonize the host plant and persist, and if the resident AMF community is affected. The AMF components of a microbial inoculum (including other saprotrophs) that was applied to maize were identified and traced in field by 454-pyrosequencing of the partial rRNA 18S gene. In addition, mycorrhizal colonization and plant biomass were monitored in inoculated and non-inoculated maize. The inoculated AMF taxa failed to colonize roots and lacked soil persistence. Nevertheless, the inoculation process reduced species dominance and increased diversity in the pre-existing AMF community. No differences were seen between mycorrhizal colonization in treated and control maize. We suggest that the slightly significant increase in treated plant biomass was potentially due to (i) marginally colonizing inoculated AMF that remained unseen and other saprotroph inoculants applied and/or (ii) the effect of inoculation on the pre-existing AMF community in treated maize roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alguacil MM, Lumini E, Roldán A, et al. (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Borriello R, Della Beffa MT, et al. (2013) Application of nonspecific commercial AMF inocula results in poor mycorrhization in Camellia japonica L. Symbiosis 61:63–76

    Article  CAS  Google Scholar 

  • Björkman T, Blanchard LM, Harman GE (1998) Growth enhancement of shrunken-2 (sh2) sweet corn by Trichoderma harzianum 1295-22: effect of environmental stress. J Amer Soc Hort Sci 123:35–40

    Google Scholar 

  • Brower JC, Kile KM (1988) Seriation of an original data matrix as applied to paleoecology. Lethaia 21:79–93

    Article  Google Scholar 

  • Cavaglieri L, Orlando J, Rodríguez MI, et al. (2005) Biocontrol of Bacillus Subtilis against fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754. doi:10.1016/j.resmic.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  • Ceballos I, Ruiz M, Fernández C, et al. (2013) The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8:e70633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colella T, Candido V, Campanelli G, et al. (2014) Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica 42:235–246

    Article  Google Scholar 

  • Desirò A (2013) Basal plants, arbuscular mycorrhizal fungi and their endobacteria: a morphological, molecular and phylogenetic study of a tripartite interaction. University of Torino, Dissertation

    Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, et al. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelmoer DJP, Behm JE, Toby Kiers E (2014) Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 23:1584–1593. doi:10.1111/mec.12451

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, et al. (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fun Biol Rev 25:68–72. doi:10.1016/j.fbr. 2011.01.002

    Article  Google Scholar 

  • Gianinazzi S, Schüepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Berlin

    Book  Google Scholar 

  • Gryndler M, Larsen J, Hršelová H, et al. (2005) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159–166. doi:10.1007/s00572-005-0027-4

    Article  PubMed  Google Scholar 

  • Guler NS, Pehlivan N, Karaoglu SA, et al. (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38:1–9. doi:10.1007/s11738-016-2153-3

    Article  CAS  Google Scholar 

  • Guo W, Zhao R, Fu R, et al. (2014) Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils. Environ Sci Pollut Res Int 21:3592–3603. doi:10.1007/s11356-013-2360-z

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153. doi:10.1094/PHYTO.2004.94.2.147

    Article  PubMed  Google Scholar 

  • Hart MM, Aleklett K, Chagnon P-L, et al. (2015a) Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New Phytol 207:235–247. doi:10.1111/nph.13340

    Article  PubMed  Google Scholar 

  • Hart M, Ehret DL, Krumbein A, et al. (2015b) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25:359–376

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Fitter AH, Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Mol Ecol 8:659–666. doi:10.1046/j.1365-294x.1999.00604.x

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25. doi:10.1099/mic.0.052274-0

    Article  CAS  PubMed  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, et al. (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K, et al. (2012) New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677. doi:10.1111/j.1574-6941.2012.01437.x

    Article  CAS  PubMed  Google Scholar 

  • Janoušková M, Krak K, Wagg C, et al. (2013) Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community. Appl Environ Microbiol 79:6507–6515

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansa JJ, Mozafar, et al. (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüssler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223. doi:10.1111/j.1469-8137.2009.02835.x

    Article  PubMed  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Wang F (2003) Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza 13:123–127. doi:10.1007/s00572-002-0207-4

    Article  CAS  PubMed  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, et al. (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Sieverding E, Mäder P, et al. (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Ohsowski BM, Zaitsoff PD, Öpik M, et al. (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204:171–179

    Article  PubMed  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, et al. (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ, et al. (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430. doi:10.1007/s00572-013-0482-2

    Article  PubMed  Google Scholar 

  • Paszt L, Malusá E, Sumorok B, et al. (2015) The influence of bioproducts on mycorrhizal occurrence and diversity in the rhizosphere of strawberry plants under controlled conditions. Adv Microbiol 5:40–53

    Article  CAS  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, et al. (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822. doi:10.1111/j.1469-8137.2012.04090.x

    Article  CAS  PubMed  Google Scholar 

  • Powell JR, Parrent JL, Hart MM, et al. (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Biol Sci 276:4237–4245

    Article  PubMed  PubMed Central  Google Scholar 

  • Quince C, Lanzén A, Curtis TP, et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    Article  CAS  PubMed  Google Scholar 

  • Rapparini F, Llusià J, Peñuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, et al. (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    Article  PubMed  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, et al. (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Sato K, Suyama Y, Saito M, et al. (2005) A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl Sci 51:179–181

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, London

    Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474. doi:10.1111/j.1469-8137.2010.03262.x

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, et al. (2014) Global diversity and geography of soil fungi. Science 346:1256688. doi:10.1126/science.1256688

    Article  PubMed  Google Scholar 

  • Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi- Pearson V, Gianinazzi S (eds) physiological and genetical aspects of mycorrhizae. INRA Press, Paris, pp. 217–221

    Google Scholar 

  • van der Heijden MGA, Scheublin TR (2007) Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174:244–250

    Article  PubMed  Google Scholar 

  • Van Geel M, Busschaert P, Honnay O, Lievens B (2014) Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. J Microbiol Methods 106:93–100. doi:10.1016/j.mimet.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  • Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66:3468–3473. doi:10.1128/AEM.66.8.3468-3473.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner GDA, Kiers ET (2015) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524. doi:10.1111/nph.13092

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz P, Parfrey LW, Yarza P, et al. (2013) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. doi:10.1093/nar/gkt1209

    PubMed Central  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, et al. (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Giusto Giovannetti, Giorgio Masoero, and Chiara Bottazzini for the technical support and for their assistance in the experimental work. The authors are grateful to Alessandro Desirò for sharing the unpublished molecular primer AMADF. This study was financially supported by Regione Piemonte (PRO-LACTE project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Berruti.

Electronic supplementary material

Supplementary Data 1

OTU table with OTU taxonomic affiliation (family and genus/clade). Closest Virtual Taxon, hit accession code, percentage identity, alignment length in bp, sequencing depth per sample prior to subsampling, and number of OTUs per sample are also reported. Abbreviations: CR = control root sample, CS1 = extraction replicate n.1 for control soil sample, CS2 = extraction replicate n.2 for control soil sample, IN = inoculum sample, TR = treated root sample, TS1 = extraction replicate n.1 for treated soil sample, and TS2 = extraction replicate n.2 for treated soil sample (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berruti, A., Lumini, E. & Bianciotto, V. AMF components from a microbial inoculum fail to colonize roots and lack soil persistence in an arable maize field. Symbiosis 72, 73–80 (2017). https://doi.org/10.1007/s13199-016-0442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0442-7

Keywords

Navigation