Skip to main content
Log in

Uric acid-degrading bacteria in the gut of the invading apple snail Pomacea canaliculata and their possible symbiotic significance

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In previous studies we have mapped uric acid deposits in specialized tissues of the invading apple snail Pomacea canaliculata. Uric acid stores function as reservoirs of combined nitrogen in insects. The first step for recycling uric acid nitrogen involves the action of uricase and here we explored the occurrence of uricase-positive bacteria in the gut of this snail. Six bacterial strains assigned to the genera Pseudomonas, Enterobacter, Citrobacter and Lactococcus were isolated on the basis of their ability to grow in vitro in a medium containing uric acid as the only carbon and nitrogen source. Uricase specific activity could be determined in three of these genera (not in Citrobacter), showing optimal pH values ranging 7.3–8.7 and optimal substrate concentrations (ranging 25–30 μM). These uricolytic bacteria may participate in recycling of combined nitrogen in this snail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker BF (1993) Towards the physiological function of uric acid. Free Radic Biol Med 14:615–631

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ (2001) Use of the gram stain in microbiology. Biotech & Histochem 76:111–118

    Article  CAS  Google Scholar 

  • Bouchet P, Rocroi JP (2005) Classification and nomenclator of gastropod families. Malacologia 47:1–397

    Google Scholar 

  • Brune A, Ohkuma M (2011) Role of the termite gut microbiota in symbiotic digestion. In: Biology of termites: a modern synthesis. Springer, pp 439–475

  • Cardoso AM, Cavalcante JJ, Cantão ME, Thompson CE, Flatschart RB, Glogauer A, Scapin SM, Sade YB, Beltrão PJ, Gerber AL (2012a) Metagenomic analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes. PLoS ONE 7:e48505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardoso AM, Cavalcante JJ, Vieira RP, Lima JL, Grieco MAB, Clementino MM, Vasconcelos ATR, Garcia ES, de Souza W, Albano RM (2012b) Gut bacterial communities in the giant land snail Achatina fulica and their modification by sugarcane-based diet. PLoS ONE 7:e33440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charrier M, Combet-Blanc Y, Ollivier B (1998) Bacterial flora in the gut of Helix aspersa (Gastropoda Pulmonata): evidence for a permanent population with a dominant homolactic intestinal bacterium, Enterococcus casseliflavus. Can J Microbiol 44:20–27

    Article  CAS  Google Scholar 

  • Charrier M, Fonty G, Gaillard-Martinie B, Ainouche K, Andant G (2006) Isolation and characterization of cultivable fermentative bacteria from the intestine of two edible snails, Helix pomatia and Cornu aspersum (Gastropoda: Pulmonata). Biol Res 39:669–681

    Article  CAS  PubMed  Google Scholar 

  • Cochran DG (1985) Nitrogen excretion in cockroaches. Annu Rev Entomol 30:29–49

    Article  CAS  Google Scholar 

  • Cockburn T, Reid R (1980) Digestive tract enzymes in two aeolid nudibranchs (Opisthobranchia: Gastropoda). Comp Biochem and Physiol Part B: Comp Biochem 65:275–281

    Article  Google Scholar 

  • Costa-Leonardo AM, Laranjo LT, Janei V, Haifig I (2013) The fat body of termites: functions and stored materials. J Insect Physiol 59:577–587

    Article  CAS  PubMed  Google Scholar 

  • Cowie RH (2002) Apple snails (Ampullariidae) as agricultural pests: their biology, impacts and management. In: Baker GM (ed) Molluscs as crop pests. CABI, Wallingford, UK, pp 145–192

    Chapter  Google Scholar 

  • Cueto JA, Giraud-Billoud M, Vega IA, Castro-Vazquez A (2011) Haemolymph plasma constituents of the invasive snail Pomacea canaliculata (Caenogastropoda, Architaenioglossa, Ampullariidae). Molluscan Res 31:57–60

    Google Scholar 

  • Evans WAL, Jones EG (1962) A note on the proteinase activity in the alimentary tract of the slug Arion ater L. Comp Biochem Physiol 5:223–225

    Article  CAS  Google Scholar 

  • Giraud-Billoud M, Koch E, Vega IA, Gamarra-Luques C, Castro-Vazquez A (2008) Urate cells and tissues in the South American apple-snail Pomacea canaliculata. J Molluscan Stud 74:259–266

    Article  Google Scholar 

  • Giraud-Billoud M, Abud MA, Cueto JA, Vega IA, Castro-Vazquez A (2011) Uric acid deposits and estivation in the invasive apple-snail, Pomacea canaliculata. Comp Biochem Physiol Part A 158:506–512

    Article  Google Scholar 

  • Giraud-Billoud M, Vega IA, Rinaldi Tosi ME, Abud MA, Calderón ML, Castro-Vazquez A (2013) Antioxidant and molecular chaperone defenses during estivation and arousal in the South American apple-snail Pomacea canaliculata. J Exp Biol 216:614–622

    Article  CAS  PubMed  Google Scholar 

  • Godoy MS, Castro-Vazquez A, Vega IA (2013) Endosymbiotic and host proteases in the digestive tract of the invasive snail Pomacea canaliculata: diversity, origin and characterization. PLoS ONE 8:e66689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence allignment editor and analysis program for WINDOWS 95/98 NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hayes KA, Burks R, Castro-Vazquez A, Darby PC, Heras H, Martín PR, Qiu J-W, Thiengo SC, Vega IA, Yusa Y, Wada T, Burela S, Cadierno MP, Cueto JA, Dellagnola FA, Dreon MS, Frassa VM, Giraud-Billoud M, Godoy MS, Ituarte S, Koch E, Matsukura K, Pasquevich Y, Rodriguez C, Saveanu L, Seuffert ME, Strong EE, Sun J, Tamburi NE, Tiecher MJ, Turner RL, Valentine-Darby P, Cowie RH (2014) Insights from an integrated view of the biology of apple snails (Caenogastropoda: Ampullariidae). Malacologia submitted

  • Imjongjirak C, Amparyup P, Sittipraneed S (2008) Cloning, genomic organization and expression of two glycosyl hydrolase family 10 (GHF10) genes from golden apple snail (Pomacea canaliculata). Mitochondrial DNA 19:224–236

    CAS  Google Scholar 

  • Kashima T, Nakamura T, Tojo S (2006) Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. J Insect Physiol 52:816–825

    Article  CAS  PubMed  Google Scholar 

  • Lehninger A, Nelson D, Cox M (eds) (2004) Principles of biochemistry, 4th edn. W H Freeman & Co, New York

    Google Scholar 

  • Lesel M, Charrier M, Lesel R (1990) Some characteristics of the bacterial flora housed by the brown garden snail Helix aspersa (Gastropoda Pulmonata). Preliminary results. In: Lesel R (ed) Proceedings of the international symposium on microbiology in Poecilotherms. Elsevier Sciences, Amsterdam, pp 149–152

    Google Scholar 

  • Li YH, Ding M, Wang J, Xu GJ, Zhao F (2006) A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp.AC-1. Appl Microbiol Biotechnol 70:430–436

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yin Q, Ding M, Zhao F (2009) Purification, characterization and molecular cloning of a novel endo-beta-1,4-glucanase AC-EG65 from the mollusc Ampullaria crossean. Comp Biochem & Physiol, part B, Biochemy Mol Biol 153:149–156

    Article  Google Scholar 

  • Little C (1968) Aestivation and ionic regulation in two species of Pomacea (Gastropoda, Prosobranchia). J Exp Biol 48:569–585

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Auckland, New Zealand

    Google Scholar 

  • Nicolai A, Vernon P, Lee M, Ansart A, Charrier M (2005) Supercooling ability in two populations of the land snail Helix pomatia Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria. Cryobiology 50:48–57

    Article  PubMed  Google Scholar 

  • Nolfi JR (1970) Biosynthesis of uric arid in the tunicate Molgula manhattensis, with a general scheme for the function of stored purines in animals. Comp Biochem Physiol 35:827–842

    Article  CAS  PubMed  Google Scholar 

  • Nuki G, Simkin PA (2006) A concise history of gout and hyperuricemia and their treatment. Arthritis Res Ther 8:S1

    Article  PubMed Central  PubMed  Google Scholar 

  • Olivera NL, Nievas ML, Lozada M, Del Prado G, Dionisi HM, Sineriz F (2009) Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Res Microbiol 160:19–26

    Article  CAS  PubMed  Google Scholar 

  • Patiño-Navarrete R, Piulachs M-D, Belles X, Moya A, Latorre A, Peretó J (2014) The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biol Lett 10:20140407

    Article  PubMed  Google Scholar 

  • Potrikus C, Breznak J (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci U S A 78:4601–4605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts W (1890) On the history of uric acid in the urine, with reference to the formation of uric acid concretions and deposits. Med-Chir Trans of the Royal Soc of Med 73:245–271

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sasaki T, Kawamura M, Ishikawa H (1996) Nitrogen recycling in the brown planthopper, Nilaparvata lugens: involvement of yeast-like endosymbionts in uric acid metabolism. J Insect Physiol 42:125–129

    Article  CAS  Google Scholar 

  • Silva T, Melo E, Lopes A, Veras D, Duarte C, Alves L, Brayner F (2013) Characterization of the bacterial microbiota of Biomphalaria glabrata (Say, 1818) (Mollusca: Gastropoda) from Brazil. Lett Appl Microbiol 57:19–25

    Article  CAS  PubMed  Google Scholar 

  • Simkiss K, Watkins B (1990) The influence of gut microorganisms on zinc uptake in Helix aspersa. Environ Pollut 66:263–271

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Ootsubo M, Sawabe T, Ezura Y, Tajima K (2004) Biodiversity and in situ abundance of gut microflora of abalone (Haliotis discus hannai) determined by culture-independent techniques. Aquaculture 241:453–463

    Article  Google Scholar 

  • Tokuda G, Lo N, Takase A, Yamada A, Hayashi Y, Watanabe H (2008) Purification and partial genome characterization of the bacterial endosymbiont Blattabacterium cuenoti from the fat bodies of cockroaches. BMC Res Notes 1:118

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Horn DJ, Garcia JR, Loker ES, Mitchell KR, Mkoji GM, Adema CM, Takacs-Vesbach CD (2011) Complex intestinal bacterial communities in three species of planorbid snails. J Molluscan Stud 78:74–80

    Article  Google Scholar 

  • Vega IA, Gamarra-Luques C, Koch E, Bussmann L, Castro-Vazquez A (2005) A study of corpuscular DNA and midgut gland occupancy by putative symbiotic elements in Pomacea canaliculata (Caenogastropoda, Ampullariidae). Symbiosis 39:37–45

    CAS  Google Scholar 

  • Vega IA, Damborenea MC, Gamarra-Luques C, Koch E, Cueto JA, Castro-Vazquez A (2006) Facultative and obligate symbiotic associations of Pomacea canaliculata (Caenogastropoda, Ampullariidae). Biocell 30:367–375

    CAS  PubMed  Google Scholar 

  • Vega IA, Giraud-Billoud M, Koch E, Gamarra-Luques C, Castro-Vazquez A (2007) Uric acid accumulation within intracellular crystalloid corpuscles of the midgut gland in Pomacea canaliculata (Caenogastropoda, Ampullariidae). Veliger 48:276–283

    Google Scholar 

  • Walker AJ, Glen DM, Shewry PR (1999) Bacteria associated with the digestive system of the slug Deroceras reticulatum are not required for protein digestion. Soil Biol Biochem 31:1387–1394

    Article  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Wren H, Cochran D (1987) Xanthine dehydrogenase activity in the cockroach endosymbiont Blattabacterium cuenoti (Mercier 1906) Hollande and Favre 1931 and in the cockroach fat body. Comp Biochem Physiol Part B: Comp Biochem 88:1023–1026

    Article  Google Scholar 

  • Zhao J, Shi B, Q-r J, C-h K (2012) Changes in gut-associated flora and bacterial digestive enzymes during the development stages of abalone (Haliotis diversicolor). Aquaculture 338:147–153

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fondo Nacional de Ciencia y Técnica (FONCyT) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Castro-Vazquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 12371 kb)

High resolution image (JPEG 4924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, E., Lozada, M., Dionisi, H. et al. Uric acid-degrading bacteria in the gut of the invading apple snail Pomacea canaliculata and their possible symbiotic significance. Symbiosis 63, 149–155 (2014). https://doi.org/10.1007/s13199-014-0296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0296-9

Keywords

Navigation