Skip to main content

Advertisement

Log in

Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The brown planthopper Nilaparvata lugens harbors intracellular fungal yeast-like symbionts and endosymbiotic bacteria, with the latter mainly comprising Wolbachia and Arsenophonus. In this study, Wolbachia or Arsenophonus were detected in all 15 brown planthopper populations collected from China and Southeastern Asian countries. Furthermore, Polymerase Chain Reaction (PCR) analysis of the individuals in a population that was infected by both Wolbachia and Arsenophonus showed that each individual was infected by only one of the two symbiotic bacteria. Real-time quantitative PCR showed that both endosymbionts are mainly localized in the mycetocytes of the fat body. Reciprocal crosses between the Wolbachia + and Arsenophonus + brown planthopper populations showed that both bacteria were maternally transmitted. Our results showed that the brown planthopper populations are extensively infected by Wolbachia or Arsenophonus, and the two bacteria may be exclusive in each host individual. This finding might be helpful for further studies on the biological functions of the endosymbiotic bacteria and will deepen our understanding of the complicated symbiosis system in this host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6(4):e1000833. doi:10.1371/journal.ppat.1000833

    Article  PubMed  Google Scholar 

  • Bing XL, Ruan YM, Rao Q, Wang XW, Liu SS (2012) Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Sci 20(2):194–206. doi:10.1111/j.1744-7917.2012.01522.x

    Article  PubMed  Google Scholar 

  • Chen CC, Cheng LL, Hou RF (1981) Studies on the intracellular yeast-like symbiote in the Brown Planthopper, Nilaparvata lugens StÅl. Z Angew Entomol 92(1–5):440–449

    Google Scholar 

  • Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci.B. Entomol Res 97(4):407–413

    Article  CAS  Google Scholar 

  • Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D (2004) Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications. Heredity 93(1):78–84

    Article  PubMed  CAS  Google Scholar 

  • Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ (1991) Notes: arsenophonus nasoniae gen. nov., sp. nov., the Causative Agent of the Son-Killer Trait in the Parasitic Wasp Nasonia vitripennis. Int J Syst Bacteriol 41(4):563

    Article  Google Scholar 

  • Goto S, Anbutsu H, Fukatsu T (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl Environ Microbiol 72(7):4805–4810

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22(7):2591–2599

    Article  PubMed  CAS  Google Scholar 

  • Graham RI, Grzywacz D, Mushobozi WL, Wilson K (2012) Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecol Lett 15(9):993–1000. doi:10.1111/j.1461-0248.2012.01820.x

    Article  PubMed  Google Scholar 

  • Gueguen G, Vavre F, Gnankine O, Peterschmitt M, Charif D, Chiel E, Gottlieb Y, Ghanim M, Zchori–Fein E, Fleury F (2010) Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol Ecol 19(19):4365–4376

    Article  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322(5902):702

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Cheng XN, Qi GJ, Wang FY, Lu F, Zhang XX, Zhai BP (2011) Rice planting systems, global warming and outbreaks of Nilaparvata lugens (Stal). Bull Entomol Res 101(2):187–199. doi:10.1017/s0007485310000313

    Article  PubMed  CAS  Google Scholar 

  • Huger A, Skinner S, Werren J (1985) Bacterial infections associated with the son-killer trait in the parasitoid wasp Nasonia (= Mormoniella) vitripennis (Hymenoptera: Pteromalidae). J Invertebr Pathol 46(3):272–280

    Article  PubMed  CAS  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329(5988):212–215

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − hΔCT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7):1268–1278. doi:10.1016/j.cell.2009.11.042

    Article  PubMed  Google Scholar 

  • Noda H, Koizumi Y, Zhang Q, Deng K (2001) Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol 31(6):727–737

    Article  PubMed  CAS  Google Scholar 

  • O’Neill S, Hoffmann A, Werren J (1997) Influential passengers: inherited microorganisms and invertebrate reproduction. Oxford University Press, Oxford

    Google Scholar 

  • Simon J-C, Carre S, Boutin M, Prunier-Leterme N, Sabater-Muñoz B, Latorre A, Bournoville R (2003) Host–based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc Lond Ser B Biol Sci 270(1525):1703–1712

    Article  Google Scholar 

  • Singh ST, Priya NG, Kumar J, Rana VS, Ellango R, Joshi A, Priyadarshini G, Asokan R, Rajagopal R (2012) Diversity and phylogenetic analysis of endosymbiotic bacteria from field caught Bemisia tabaci from different locations of North India based on 16S rDNA library screening. Infect Genet Evol 12(2):411–419

    Article  PubMed  Google Scholar 

  • Stouthamer R, Breeuwer J, Hurst G (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53(1):71–102

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Lv L, Jing S, Zhu L, He G (2010) Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl Environ Microbiol 76(6):1740–1745

    Article  PubMed  CAS  Google Scholar 

  • Vala F, Egas M, Breeuwer J, Sabelis M (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17(3):692–700

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Luo J, Lai FX, Fu Q (2010) Identification and phylogenetic analysis of symbiotic bacteria Arsenophonus from the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Acta Entomol Sin 53(006):647–654

    CAS  Google Scholar 

  • Werren JH, Skinner S, Huger A (1986) Male-killing bacteria in a parasitic wasp. Science 231(4741):990

    Article  PubMed  CAS  Google Scholar 

  • Xue J, Bao YY, Li BL, Cheng YB, Peng ZY, Liu H, Xu HJ, Zhu ZR, Lou YG, Cheng JA, Zhang CX (2010) Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One 5(12):e14233

    Article  PubMed  CAS  Google Scholar 

  • Xue J, Zhang XQ, Xu HJ, Fan HW, Huang HJ, Ma XF, Wang CY, Chen JG, Cheng JA, Zhang CX (2013) Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea. Insect Biochem Mol Biol 43(5):433–443

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhang KJ, Hong XY (2010) Infection density of Wolbachia in different tissues of macropters and brachypters adults of Nilaparvata lugens. J Nanjing Agric Univ 005:35–39

    Google Scholar 

  • Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc R Soc London, Ser B 265(1395):509–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Ming-Xing Jiang, Professor Zeng-Rong Zhu, Professor Qi-Yi Tang, Dr. Zhan-Yu Liu of Zhejiang University, Professor Jin-Cai Wu of Yangzhou University, Dr. Hong-Xing Xu of Zhejiang Academy of Agricultural Sciences and Dr. Qiang Zhou of Sun- Yat Sun University for their kind helps in collecting brown planthopper samples. This work was supported by National Basic Research Program of China (973 Program, No. 2010CB126200) and the National Natural Science Foundation of China (Grant No. 31272374 and 31070136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Xi Zhang.

Additional information

Lv-Yu Qu and Yi-Han Lou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, LY., Lou, YH., Fan, HW. et al. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens . Symbiosis 61, 47–53 (2013). https://doi.org/10.1007/s13199-013-0256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-013-0256-9

Keywords

Navigation