Skip to main content
Log in

Evaluation of fungus-induced agilawood from Aquilaria sinensis in China

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Agilawood is a rare and valuable traditional medicine used worldwide since ancient times. However, its formation in the tree Aquilaria sinensis under natural conditions takes a long time. Fungi with high levels of bioactivity for triggering agilawood formation could enable the establishment of plantations of A. sinensis for improved production of this traditional medicine in Hainan Province, China. The objective of the present study was to evaluate the chemical components of agilawood induced in A. sinensis by inoculation with the fungus Paraconiothyrium variabile. The results using by GC-MS and HPLC indicated that sesquiterpenoids, chromones and their analogues were produced when the fungus was inoculated for 8 months into the host tree. Dibutyl phthalate and Phenol,2,2′-methylenebis[6-(1,1-dimethylethyl)- 4-methyl]-, the main components of A. sinensis, wood were converted into components of agilawood. The data showed that the fungus-induced agilawood samples were similar to natural agilawood and could be used as an agilawood substitute. This is the first time that agilawood formation has been shown to result from inoculation of A. sinensis with the bioactive fungus P. variabile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29:328–337

    Article  Google Scholar 

  • Chen HQ, Yang Y, Xue J, Wei JH, Zhang Z, Chen HJ (2011) Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees. Molecules 16:4884–4896

    Article  PubMed  CAS  Google Scholar 

  • Chou ST, Lai CP, Lin CC, Lin CC, Shih Y (2012) Study of the chemical composition, antioxidant activity and anti-inflammatory activity of essential oil from Vetiveria zizanioides. Food Chem 134:262–268

    Article  CAS  Google Scholar 

  • Clara M, Windhofer G, Hartl W, Braun K, Simon M, Gans O, Scheffknecht C, Chovanec A (2010) Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere 78:1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Commission CP (2010) Pharmacopoeia of the People’s Republic of China. Chinese Medical Science and Technology Press, Beijing

    Google Scholar 

  • Cui JL, Guo SX, Xiao PG (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B 12:385–392

    Article  PubMed  CAS  Google Scholar 

  • Damm U, Verkley GJM, Crous PW, Fourie PH, Haegi A, Riccioni L (2008) Novel Paraconiothyrium species on stone fruit trees and other woody hosts. Persoonia 20:9–17

    Article  PubMed  CAS  Google Scholar 

  • Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloid Surfaces B 87:23–27

    Article  CAS  Google Scholar 

  • Forootanfar H, Faramarzi MA, Shahverdi AR, Yazdi MT (2011) Purification and biochemical characterization of extracellular laccase from the ascomycete Paraconiothyrium variabile. Bioresour Technol 102:1808–1814

    Article  PubMed  CAS  Google Scholar 

  • Forootanfara H, Movahednia MM, Yaghmaei S, Tabatabaei-Sameni M, Rastegard H, Sadighi A, Faramarzi MA (2012) Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase. J Hazard Mater 209:199–203

    Article  Google Scholar 

  • Gao HJ, Wang YW, Zhang WT, Wang W, Mu ZM (2011) Isolation, identification and application in lignin degradation of an ascomycete GHJ-4. Afr J Biotechnol 10:4166–4174

    CAS  Google Scholar 

  • Gao ZH, Wei JH, Yang Y, Zhang Z, Zhao WT (2012) Selection and validation of reference genes for studying stress-related garwood formation of Aquilaria sinensis. Plant Cell Rep 31:1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Kakino M, Tazawa S, Maruyama H, Tsuruma K, Araki Y, Shimazawa M, Hara H (2010) Laxative effects of agarwood on low-fiber diet-induced constipation in rats. BMC Complement Altern Med 10:68

    Article  PubMed  Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2012) Effects of Rhizophagus irregularis MUCL41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza. doi:10.1007/s00572-012-0467-6

    PubMed  Google Scholar 

  • Mei WL, Zeng YB, Wu J, Cui HB, Dai HF (2008) Chemical composition and anti-MRSA activity of the essential oil from Chinese eaglewood. J Chin Pharmaceu Sci 17:225–229

    CAS  Google Scholar 

  • Naef R (2011) The volatile and semi-volatile constituents of agilawood, the infected heartwood of Aquilaria species: a review. Flavour Frag J 26:73–89

    Article  CAS  Google Scholar 

  • Ng LT, Chang YS, Kadir AA (1997) A review on agar (gaharu) producing Aquilaria species. J Trop For Sci Prod 2(2):272–285

    Google Scholar 

  • Ostadhadi-Dehkordi S, Tabatabaei-Sameni M, Forootanfar H, Kolahdouz S, Ghazi-Khansari M, Faramarzi MA (2012) Degradation of some benzodiazepines by a laccase-mediated system in aqueous solution. Bioresour Technol 125:344–347

    Article  PubMed  CAS  Google Scholar 

  • Qi SY, He ML, Lin LD, Zhang CH, Hu LJ, Zhang HZ (2005) Production of 2-(2-phenylethyl) chromones in cell suspension cultures of Aquilaria sinensis. Plant Cell Tiss Org 83:217–221

    Article  CAS  Google Scholar 

  • Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. C R Bio 327:639–648

    Article  Google Scholar 

  • Tajuddin SN, Yusoff MM (2010) Chemical composition of volatile oils of Aquilaria malaccensis (Thymelaeaceae) from Malaysia. Nat Prod Commun 5:1965–1968

    PubMed  CAS  Google Scholar 

  • Tret’yakov KV (2013) Retention data. NIST Mass Spectrometry Data Center. 2008. Available online: http://chemdata.nist.gov/mass-spc/pubs/pittcon-2000/index.htm (accessed on 16 January 2013)

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Wang XH, Zhang CH, Wang Y, Gomes-Laranjo J (2010) Screen of micro-organisms for inducing the production of dragon’s blood by leaf of Dracaena cochinchinensis. Lett Appl Microbiol 51:504–510

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Zhang CH, Yang LL, Gomes-Laranjo J (2011) Production of dragon’s blood in Dracaena cochinchinensis plants by inoculation of Fusarium proliferatum. Plant Sci 180:292–299

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Dai CC, Cao JL, Xu DS (2012) Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World J Microbiol Biotechnol 28:575–584

    Article  PubMed  Google Scholar 

  • Weyerstahl P, Marschall H, Eckhardt A, Christiansen C (1999) Constituents of commercial Brazilian Iantana oil. Flavour Fragr J 14:15–28

    Article  CAS  Google Scholar 

  • Yang L, Qiao LR, Xie D, Yuan YH, Chen NH, Dai JG, Guo SX (2012) 2-(2-Phenylethyl)chromones from Chinese eaglewood. Phytochemistry 76:92–97

    Article  PubMed  CAS  Google Scholar 

  • Yoon JS, Lee MK, Sung SH, Kim YC (2006) Neuroprotective 2-(2-henylethyl)chromomes of Imperata cylindrical. J Nat Prod 69:290–291

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Sciences Foundation of China (No. 31170016, 31070300, 31270383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunxing Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, J., Wang, C., Guo, S. et al. Evaluation of fungus-induced agilawood from Aquilaria sinensis in China. Symbiosis 60, 37–44 (2013). https://doi.org/10.1007/s13199-013-0237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-013-0237-z

Keywords

Navigation