Skip to main content
Log in

Effect of Piriformospora indica and Sebacina vermifera on plant growth and essential oil yield in Thymus vulgaris in vitro and in vivo experiments

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Thymus vulgaris of family Lamiaceae is one of the most plants in pharmacy industries. In this study effect of Piriformospora indica and Sebacina vermifera on growth and development plant, yield and composition of the essential oil in a completely randomized design were evaluated in vitro and in pot culture experiments. Plants were studied by means of plant height, shoot fresh and dry weights, number of shoots, root length, root fresh and dry weights and essential oil analyses. The oil was extracted from the dry matter of shoots by hydro distillation, and their composition was determined by GC/MS. In vitro and in vivo cultures showed that plant height and root length increased in pots inoculated with S. vermifera and P. indica. Maximum fresh and dry weight (shoot and root), number of shoots were observed in pots inoculated with P. indica. In thyme inoculated with S. vermifera and P. indica oil yield increased as compared to non-inoculated control plants. GC and GC/MS revealed that the level of thymol was enhanced as the effect of S. vermifera and P. indica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams RP (1989) Identification of essential oils by ion trap mass spectroscopy. Academic, New York

    Google Scholar 

  • Al-Sulaiman MA, Barakat MN (2010) In vitro shoot multiplication of Ziziphus spina-christi by shoot tip culture. Afr J Biotechnol 8:3782–3788

    Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243

    Article  PubMed  Google Scholar 

  • Barazani O, Von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144:1223–1232

    Article  PubMed  CAS  Google Scholar 

  • Chao SC, Young DG, Oberg CJ (2000) Screening for inhibitory activity of essential oils oil selected bacteria, fungi and viruses. J Essent Oil Res 12:639–649

    CAS  Google Scholar 

  • Chen LJ, Hu TW, Huang LC (1995) A protocol toward multiplication of the medicinal tree, Eucommia ulmoides Oliver. In vitro Cell Dev Biol Plant 31:193–198

    Article  Google Scholar 

  • Clay K (1984) The effect of the fungus Atkinsonella hypoxylon (Clavicipitaceae) on the reproductive system and demography of the grass Danthonia spicata. New Phytol 98:165–175

    Article  Google Scholar 

  • Davies NW (1990) Gas chromatographic retention index of monoterpenes and sesquiterpenes on methyl silicon and carbowax 20 M phases. Chromatogr 503:1–24

    Article  CAS  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457

    Article  PubMed  CAS  Google Scholar 

  • Dickson S, Mandeep SM, Smith SM (1998) Evaluation of vesicular arbuscular mycorrhizal colonization by staining. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin, pp 77–84

    Google Scholar 

  • Guillen MD, Manzanos MJ (1998) Composition of the extract in dichlormethane of the aerial parts of a Spanish wild growing plant Thymus Vulgaris L. Flavour Fragr J 13:259–262

    Article  CAS  Google Scholar 

  • Horne D, Holm M, Oberg C, Chao S, Young PG (2001) Antimicrobial effects of essential oils on Streptococcus pneumonia. J Essent Oil Res 13:387–392

    CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe J (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kafer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131

    Article  PubMed  CAS  Google Scholar 

  • Kaldorf M, Koch B, Rexer KH, Kost G, Varma A (2005) Patterns of interaction between Populus Esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Biol 7:210–218

    Article  PubMed  CAS  Google Scholar 

  • Leung AY, Foster S (1996) Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. John Wiley & Sons, New York, p 492

    Google Scholar 

  • Loomis WD, Corteau R (1972) Essential oil biosynthesis. Rec Adv Phytochem 6:147–185

    Google Scholar 

  • Mao AH, Wetten A, Fay M, Caligari PDS (1995) In vitro propagation of Clerodendrum colebrookianum Walp; a potential natural anti-hypertension medicinal plant. Plant Cell Rep 14:493–496

    Article  CAS  Google Scholar 

  • Meena MC, Meena R, Patni V (2010) High frequency plant regeneration from shoot tip explants of Citrullus colocynthis (Linn.) Schrad.—an important medicinal herb. Afr J Biotechnol 9:5037–5041

    CAS  Google Scholar 

  • Mucciarelli M, Scannerini S, Berrtea C, Maffei M (2003) In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol 158:579–591

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pandeya K, Tiwari KN, Singh J, Verma JP, Dubey SD (2010) In vitro propagation of Clitoria ternatea L.: a rare medicinal plant. J Med Plant Res 4:664–668

    CAS  Google Scholar 

  • Peskan-Berghoefer T, Shahollaria B, Giong PH, Hehl S, Markerta C, Blanke V, Kost G, Varma A, Oelmeuller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmatic reticulum and at the plasma membrane. Physiol Plant 122:465–477

    Article  CAS  Google Scholar 

  • Phillip JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  PubMed  CAS  Google Scholar 

  • Sarwar S, Zia M, R-u R, Fatima Z, Sial RA, Chaudhary MF (2009) In vitro direct regeneration in mint from different explants on half strength MS medium. Afr J Biotechnol 8:4667–4671

    CAS  Google Scholar 

  • Senatore F (1996) Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (southern Italy). J Agric Food Chem 44:1327–1332

    Article  CAS  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathol 97:523–531

    Article  CAS  Google Scholar 

  • Shibamoto T (1987) In: Sandra P, Bicchi C (eds) Retention indices in essential oil analysis. In: Capillary gas chromatography in essential oils analysis. Dr. Alferd Huethig Verlag, New York, pp 259–274

    Google Scholar 

  • Singh A, Sharma J, Rexer K-H, Varma A (2000) Plant productivity determinants beyond minerals, water and light. Piriformospora indica: a revolutionary plant growth promoting fungus. Curr Sci 79:1548–1554

    Google Scholar 

  • Sirrenberg A, Gobel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  PubMed  CAS  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of Auxins and Cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact 21(10):1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Varma A, Verma S, Sudha N, Sahay S, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    PubMed  CAS  Google Scholar 

  • Varma A, Singh A, Sudha N, Sahay S, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: a cultivable mycorrhiza-like endosymbiotic fungus. Mycota IX, Springer Series, Germany, pp 123–150

    Google Scholar 

  • Verma S, Varma A, Rexer KH, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 95:896–903

    Article  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Heuckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 38:13386–13391

    Article  Google Scholar 

  • Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel K-H (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70

    Article  PubMed  CAS  Google Scholar 

  • Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231

    Article  Google Scholar 

  • Weiss M, Selosse MA, Rexer K, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modarres University. We thank the Research Institute of Forests and Rangelands, Tehran, Iran for GC and GC-mass analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Kari Dolatabadi or Ebrahim Mohammadi Goltapeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolatabadi, H.K., Goltapeh, E.M., Moieni, A. et al. Effect of Piriformospora indica and Sebacina vermifera on plant growth and essential oil yield in Thymus vulgaris in vitro and in vivo experiments. Symbiosis 53, 29–35 (2011). https://doi.org/10.1007/s13199-010-0104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0104-0

Keywords

Navigation