Skip to main content
Log in

Symbiosis drove cellular evolution

Symbiosis fueled evolution of lineages of Foraminifera (eukaryotic cells) into exceptionally complex giant protists

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Anthropocentric cultural bias led to conceptualizations of evolution as a tree with branches leading to a crown of vertebrates and higher plants. Gradually refined over the years it became part of common scientific culture to think of eukaryotic evolution as process by which cells, limited by surface to volume ratios and other factors, became specialized, leading to multi-cellularity and eventually to the crowned tree. Knowledge of other pathways of cellular evolution is available, but not broadly recognized. Molecular systematics, genetic analyses and ultrastructural comparisons have changed our outlook on evolution and the diversity of life. The discovery of a huge (average size 2.1 cm) unicellular, new, exceptionally complex, dinoflagellate-hosting soritid foraminiferan from the Heron-Wistori Channel, (GBR Australia) gave impetus to re-explore some old ideas on cellular evolution and place them in a contemporary context. In particular, it caused change in perspective of the evolution of the collective group known as larger foraminifera (LF). They exemplify the power by which symbiosis drove the evolution of a predisposed and malleable group of organisms. The factors that underlay foraminiferan predisposition to symbioses with algae are discussed. Each of the evolutionary lines of LF has developed, in its own way, amazing structural adaptations making them extremely complex giant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adl SM, Simpson AGB, Farmer M, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendosa L, Moestrup Ø, Mozley-Standridge S, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The newer higher level classification of Eukaryotes with emphasis on the taxonomy of protists. J Eukarot Microbiol 52:399–451

    Article  Google Scholar 

  • Anderson OR, Be AWH (1976) The ultrastructure of a planktonic foraminifer, Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates. J Foramin Res 6:1–21

    Article  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Syst 34:661–689

    Article  Google Scholar 

  • Carpenter WB (1862) Introduction to the study of Foraminifera. Hardwicke, London, pp 1–319

    Google Scholar 

  • Chai J, Lee JJ (1999a) Initial recognition of endosymbioticdiatoms by the larger foraminifer Amphistegina lobifera. Symbiosis 26:39–53

    Google Scholar 

  • Chai J, Lee JJ (1999b) Establishment and maintenance ofendosymbiotic diatoms by the larger foraminifer Amphisteginalobifera. In: Wagner E, Norman J, Greppin H, Hackstein JHP, Herrmann RG, Kowalik KV, Schenk HEA, Seckbach J (eds) Endocytobiology VII. Universities of Freiburg and Geneva, pp 137–152

  • Chai J, Lee JJ (2000) Recognition, establishment and maintenance of diatom endosymbioses in foraminifera. In: Lee JJ, Muller PH (eds) Advances in the biology of foraminifera. Micropaleontology 46 (supplement 1):182–195

  • Chang SS, Trench RK (1982) Peridinin-Chlorophyll a proteins from the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum Freudenthal. Proc R Soc Lond B 215:191–210

    Article  CAS  Google Scholar 

  • Corliss J (1989a) The protozoan and the cell: a brief twentieth century overview. J Hist Biol 22:307–323

    Article  PubMed  CAS  Google Scholar 

  • Corliss J (1989b) Protistan diversity and origins of multicellular/multitissued organisms. Bollitine Zoologie 56:227–234

    Google Scholar 

  • Correia MJ, Lee JJ (2000) Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis 29:343–355

    Google Scholar 

  • Correia MJ, Lee JJ (2002a) Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis 32:15–26

    Google Scholar 

  • Correia MJ, Lee JJ (2002b) How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis 32:27–38

    Google Scholar 

  • Doyle WL, Doyle MM (1940) The structure of zooxanthellae. Papers from Tortugas Laboratory 32:129–142

    Google Scholar 

  • Faber WW, Lee JJ (1991) Histochemical evidence for digestion in Heterostegina depressa and Operculina ammonoides (Foraminifera). Endocytobiology and Cell Research 8:53–59

    Google Scholar 

  • Faber WW, Anderson OR, Lindsey JL, Carron DA (1988) Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: I. Occurence and stability of two mutually exclusive chrysophyte endosymbionts and their ultrastructure. J Foraminiferal Res 18:334–343

    Article  Google Scholar 

  • Faber WW, Anderson OR, Carron DA (1989) Algal foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis: II. Effects of two symbiont species on foraminiferal growth and longevity. J Foraminiferal Res 19:185–193

    Article  Google Scholar 

  • Garcia-Cuetos L, Pochon X, Pawlowski J (2005) Molecular evidence for host-symbiont specificity in soritid foraminifera. Protistology 156:399–412

    Article  CAS  Google Scholar 

  • Gastrich MD (1988) Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera. J Phycol 23:623–632

    Article  Google Scholar 

  • Grell KG (1973) Protozoology. Springer-Verlag, Berlin, p 554

    Google Scholar 

  • Haeckel E (1886) Generelle morphologie der organismen. Vol. 1, 574 pp, Vol. 2, 462 pp. Reimer, G. Berlin

  • Hallock P (1985) Why are larger foraminifera large? Paleobiology 11:195–208

    Google Scholar 

  • Hallock P, Forward LB, Hansen HJ (1986) Environmental influence of test shape in Amphistegina. J Foramin Res 16:224–231

    Article  Google Scholar 

  • Hawkins EK, Lee JJ (1990) Fine structure of the cell surface of a cultured endosymbiotic strain of Porphyridium sp. (Rhodophyta). Trans Am Microsc Soc 109:352–360

    Article  Google Scholar 

  • Hawkins EK, Lee JJ (2001) Architecture of the Golgi apparatus of a scale forming alga: biogenesis and transport of scales. Protoplasma 216:387–395

    Article  Google Scholar 

  • Hawkins EK, Lee JJ, Correia M (2003) Polar localization of filamentous actin in cells of the scale-forming alga Pleurochrysis sp. Protoplasma 220:233–236

    Article  PubMed  CAS  Google Scholar 

  • Hofker J (1927) The foraminifera of the Siboga Expedition; Part 1. Monographs Siboga Expedition 1899-1900 (Leiden) 4:1–78

    Google Scholar 

  • Hohenegger J (1999) Larger foraminifera-microscopical greenhouses indicating shallow-water tropical and subtropical environments in the present and past. Ocasional papers Kagoshima Univ. Research Center for the Pacific Islands 32:19–45

    Google Scholar 

  • Hottinger L (1978) Comparative anatomy of elementary shell structure in selected larger foraminifera. In: Hedley R, Adams CG (eds) Foraminifera, vol. 3. Academic, London, pp 203–206

    Google Scholar 

  • Hottinger L (1984) Foraminiféres de grande taile: signification des structures complexes de la coquille. Benthos 83: 2nd International Symposium on Benthic Foraminifera, Pau 1983. Pp. 309–315. Pau et Bordeaux

  • Hottinger L (2000) Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. In: Lee JJ, Muller PH (eds) Advances in the biology of foraminifera. Micropaleontology 46 (supplement 1):57–86

  • Hottinger L, Dreher D (1974) Differentiation of protoplasm in Nummulitidae (Foraminifera) from Elat, Red Sea. Mar Biol 25:41–61

    Article  Google Scholar 

  • Hottinger L, Leutenegger S (1980) The structure of calcarinid foraminifera. Schweizerische Palaontolgische Abhandlungen 101:115–150

    Google Scholar 

  • Hyams-Kaphzan O, Lee JJ (2009) Cytological examination and location of symbionts in “living sands”-Baculogypsina. J Foramin Res 38:298–304

    Article  Google Scholar 

  • Hyman L (1940) The invertebrates: protozoa through Ctenophora. McGraw-Hill, New York, pp 44–45

    Google Scholar 

  • Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc Natl Acad Sci USA 89:10302–10305

    Article  PubMed  CAS  Google Scholar 

  • Kremer BP, Schmaljohann R, Röttger R (1980) Features and nutritional significance of photosynthates produced by unicellular algae symbiotic with larger foraminifera. Mar Ecol Prog Ser 2:225–228

    Article  CAS  Google Scholar 

  • Langer MR, Lipps JH (1995) Phylogenetic incongruence between dinoflagellate endosymbionts (Symbiodinium) and their host foraminifera (Sorites): small subunit ribosomal RNA gene sequence evidence. Mar Micropaleontol 26:179–186

    Article  Google Scholar 

  • Lee JJ (1990) Fine structure of the rhodophycean Porhyridium purpureum in situ in Peneroplis pertusus (Forskål) and P. acicularis (Batsch) and in axenic culture. J Foramin Res 20:162–169

    Article  Google Scholar 

  • Lee JJ (2006) Symbiotic forms of life. In: Seckbach J (ed) Life as we know it. Springer, Dordrecht, pp 307–324

    Google Scholar 

  • Lee JJ, Zucker W (1969) Algal flagellate symbiosis in the foraminifera Archaias angulatus. J Protozool 16:71–81

    Google Scholar 

  • Lee JJ, Hallock P (1987) Algal symbiosis as the driving force in the evolution of larger foraminifera. Annals New York Academy of Science 503:330–347

    Article  Google Scholar 

  • Lee JJ, Hallock PH (eds) (2000) Advances in the biology of the Foraminifera. Micropaleontology 46 (supplement 1). Micropaleontology Press, New York, pp368

  • Lee JJ, Correia M (2005) Endosymbiotic diatoms from previously unsampled habitats. Symbiosis 38:251–260

    CAS  Google Scholar 

  • Lee JJ, Reyes D (2006) Initial studies of dinoflagellate recognition in Soritinae. Symbiosis 42:89–93

    CAS  Google Scholar 

  • Lee JJ, Crockett LJ, Hagen J, Stone R (1974) The taxonomic identity and physiological ecology of Chlamydomonas hedleyi sp. From the foraminifer Archaias angulatus. Br Phycol J 9:407–422

    Article  Google Scholar 

  • Lee JJ, McEnery ME, Kahn E, Schuster F (1979) Symbiosis and the evolution of larger foraminifera. Micropaleontology 25:118–140

    Article  Google Scholar 

  • Lee MJ, Ellis R, Lee JJ (1982) A comparative study of photoadaptation in four diatoms isolated as endosymbionts from larger foraminifera. Mar Biol 68:193–197

    Article  Google Scholar 

  • Lee JJ, Saks NM, Kapiotou F, Wilen SH, Shilo M (1984) Effects of host cell extracts on cultures of endosymbiotic diatoms from larger foraminifera. Mar Biol 82:113–120

    Article  Google Scholar 

  • Lee J, Lanners E, terKuile B (1988) The retention of chloroplasts by the foraminifer Elphidium crispum. Symbiosis 5:45–60

    CAS  Google Scholar 

  • Lee JJ, Faber WW, Lee RE (1991) Granular reticulopodal digestion—A possible preadaption to benthic foraminiferal symbiosis? Symbiosis 10:47–51

    Google Scholar 

  • Lee JJ, Wray CG, Lawrence C (1995) Could foraminiferal zooxanthellae be derived from environmental pools contributed to by different coelenterate hosts? Acta Protozool 34:75–85

    CAS  Google Scholar 

  • Lee JJ, Morales J, Bacus S, Diamont A, Hallock P, Pawlowski J, Thorpe J (1997) Progress in characterizing the endosymbiotic dinoflagellates of soritid foraminifera and related studies on some stages of the life cycle of Marginopora vertebralis. J Foramin Res 27:254–263

    Article  Google Scholar 

  • Lee JJ, Correia M, Reimer CW, Morales J (2001) A revised description of the Nitzschia frustulum var. symbiotica complex, the most common of the endosymbiotic diatoms in larger foraminifera. In: Lee JJ, Muller PH (eds) Advances in the Biology of Foraminifera. Micropaleontology 46 (supplement 1): 170–182

  • Lee JJ, Fine M, Levy O, Morales J (2009) A note on asexual reproduction of a Marginopora sp. from a modern deep-water population in the Heron-Wistari Channel, Australia. J Foramin Res 39:4–7

    Article  Google Scholar 

  • Lee JJ, Cervasco M, Morales J, Billick MG, Fine M, Levy O. 2010. A new genus of symbiotic dinoflagellates, Symbiodinoides, from some soritid foraminifera and a new species, Symbiodinoides dubinskyi from the Heron-Wistori Channel,Great Barrier Reef, Australia. (Journal of Eukaryotic Microbiology (In review)

  • Leutenegger S (1977) Symbiosis between larger foraminifera and unicellular algae in the Gulf of Elat. Utrecht Micropaleontol Bull 1:241–244

    Google Scholar 

  • Leutenegger S (1984) Symbiosis in benthic foraminifera: specificity and host adaptation. J Foramin Res 14:16–35

    Article  Google Scholar 

  • Leutenegger S, Hansen H (1979) Ultrastructural and radiotracer studies of pore-function in foraminifera. Mar Biol 5:11–16

    Article  Google Scholar 

  • Lipps JH, Severin KP (1986) Alveolina quoyi, a living fusiform foraminifer at Motupore Island, Papua, New Guinea. Sci N Guin 11:126–137

    Google Scholar 

  • Lopez R (1979) Algal chloroplastsin the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol 53:201–211

    Article  CAS  Google Scholar 

  • Müller-Merz E, Lee JJ (1976) Symbiosis in the larger foraminiferan Sorites marginales (with notes on Archaias spp). J Protozool 23:390–396

    Google Scholar 

  • Newell ND (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103–124

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski J, Holzmann M, Fahrni JF, Pochon X, Lee JJ (2001) Molecular identification of algal endosymbionts in large miliolid foraminifera: 2 Dinoflagellates. J Eukaryot Microbiol 48:368–373

    Article  PubMed  CAS  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Article  Google Scholar 

  • Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27

    Article  Google Scholar 

  • Pochon X, Montoya-Burgos J, Stadelman B, Pawlowski J (2006) Molecular phylogeny, Evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  PubMed  CAS  Google Scholar 

  • Reichel M (1936) Etude sur les Alvéolines. Mémoires Suisses Paleontologie 57:1–93

    Google Scholar 

  • Reichel M (1937) Etude sur les Alvéolines. Mémoires Suisses Paleontologie 59:95–147

    Google Scholar 

  • Schoenberg DA, Trench RK (1980a) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of S. microadriaticum. Proc R Soc Lond B 207:405–427

    Article  CAS  Google Scholar 

  • Schoenberg DA, Trench RK (1980b) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. II. Morphological variation in S. microadriaticum. Proc R Soc Lond B 207:429–444

    Article  Google Scholar 

  • Schoenberg DA, Trench RK (1980c) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal and specificityin its symbiosis with marine invertebrates. III. Specificity and infectivity of S. microadriaticum. Proc R Soc Lond B 207:445–460

    Article  Google Scholar 

  • Spiro HJ (1987) Symbiosis in the planktonic foraminifer Orbulina universa and the isolation of its symbiotic dinoflagellate, Gymnodinium beii sp. nov. J Phycol 21:307–317

    Article  Google Scholar 

  • Sutton DC, Hoegh-Guldberg O (1990) Host-zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of host extract on symbionts. Biol Bull 178:175–186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.J., Cervasco, M.H., Morales, J. et al. Symbiosis drove cellular evolution. Symbiosis 51, 13–25 (2010). https://doi.org/10.1007/s13199-010-0056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0056-4

Keywords

Navigation