Skip to main content
Log in

A note on the structured perturbation analysis for the inversion formula of Toeplitz matrices

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The invertibility of a Toeplitz matrix can be assessed based on the solvability of two standard equations. The inverse of the nonsingular Toeplitz matrix can then be represented as the sum of products of circulant and skew-circulant (CS) matrices. In this note, we provide a new structured perturbation analysis for the CS representation of Toeplitz inversion and the new upper bound is just half as large as the existing upper bound proposed by Wu et al. (Numer Linear Algebra Appl 22(4):777–792, 2015) and Feng et al. (East Asian J Appl Math 5(2):160–175, 2015). Meanwhile, some practical issues and numerical experiments involving the numerical solutions of fractional partial differential equations are reported to support our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since the CPU time required for once GSF-CS (or GSF) is very short, it will be not easy to observe the time differences. Therefore, here we record the (total) CPU time required for GSF-CS (or GSF) to execute 2000 runs. Such situations often occur in numerical fPDEs; see e.g. [9, 10] and also Example 2.

References

  1. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York, NY (2004)

    MATH  Google Scholar 

  3. Chan, R.H.-F., Jin, X.-Q.: An Introduction to Iterative Toeplitz Solvers. Fundamentals of Algorithms, SIAM, Philadelphia, PA (2007)

    Book  MATH  Google Scholar 

  4. Lee, S.T., Pang, H.-K., Sun, H.-W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32(2), 774–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wu, G., Feng, T.-T., Wei, Y.: An inexact shift-and-invert Arnoldi algorithm for Toeplitz matrix exponential. Numer. Linear Algebra Appl. 22(4), 777–792 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gu, X.-M., Huang, T.-Z., Zhao, X.-L., Li, H.-B., Li, L.: Fast iterative solvers for numerical simulations of scattering and radiation on thin wires. J. Electromagn. Waves Appl. 29(10), 1281–1296 (2015)

    Article  Google Scholar 

  7. Feng, T.-T., Wu, G., Xu, T.-T.: An inexact shift-and-invert Arnoldi algorithm for large non-Hermitian generalised Toeplitz eigenproblems. East Asian J. Appl. Math. 5(2), 160–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gu, X.-M., Huang, T.-Z., Zhao, X.-L., Xu, W.-R., Li, H.-B., Li, L.: Circulant preconditioned iterative methods for peridynamic model simulation. Appl. Math. Comput. 248, 470–479 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72(3), 957–985 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lei, S.-L., Huang, Y.-C.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94(5), 1062–1078 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, M., Gu, X.-M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Trench, W.F.: An algorithm for the inversion of finite Toeplitz matrix. J. SIAM 13(3), 515–522 (1964)

    MATH  Google Scholar 

  14. Gohberg, I.C., Semencul, A.A.: On the inversion of finite Toeplitz matrices and their continuous analogs. Mat. Issled., 7(2), 201–223 (1972) (in Russian)

  15. Chun, J., Kailath, T.: A constructive proof of the Gohberg-Semencul formula. Linear Algebra Appl. 121, 475–489 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gohberg, I.C., Krupnik, N. Y.: A formula for the inversion of finite Toeplitz matrices. Mat. Issled. 7(12), 272–283 (1972) (in Russian)

  17. Heinig, G., Rost, K.: Algebraic Methods for Toeplitz-like Matrices and Operators, Operator Theory: Advances and Applications, 13. Birkhäuser, Basel, Switzerland (1984)

    Book  MATH  Google Scholar 

  18. Ben-Artzi, A., Shalom, T.: On inversion of Toeplitz and close to Toeplitz matrices. Linear Algebra Appl. 75, 173–192 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Labahn, G., Shalom, T.: Inversion of Toeplitz matrices with only two standard equations. Linear Algebra Appl. 175, 143–158 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ng, M.K., Rost, K., Wen, Y.-W.: On inversion of Toeplitz matrices. Linear Algebra Appl. 348(1–3), 145–151 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integral Equ. Oper. Theory 15(5), 730–743 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, Q., Xu, Z., Ye, Z.: A new expression and a fast algorithm for the inverse of Toeplitz matrix. J. Numer. Methods Comput. Appl. 26(3), 191–197 (2005) https://doi.org/10.3969/j.issn.1000-3266.2005.03.004 (in Chinese)

  23. Lv, X.-G., Huang, T.-Z.: A note on inversion of Toeplitz matrices. Appl. Math. Lett. 20(12), 1189–1193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, J., Huang, T.-Z.: An approximate inverse preconditioner for Toeplitz systems with multiple right-hand sides. Appl. Math. Comput. 218(23), 11370–11379 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Heinig, G.: On the reconstruction of Toeplitz matrix inverses from columns. Linear Algebra Appl. 350(1–3), 199–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zheng, Y., Fu, Z., Shon, S.: A new Toeplitz inversion formula, stability analysis and the value. Nonlinear Sci. Appl. 10(3), 1089–1097 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van Barel, M., Heinig, G., Kravanja, P.: A stabilized superfast solver for nonsymmetric Toeplitz systems. SIAM J. Matrix Anal. Appl. 23(2), 494–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bunch, J.R.: Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Stat. Comput. 6(2), 349–364 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bunch, J.R.: The weak and strong stability of algorithms in numerical linear algebra. Linear Algebra Appl. 88–89, 49–66 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gutknecht, M.H., Hochbruck, M.: The stability of inversion formulas for Toeplitz matrices. Linear Algebra Appl. 223–224, 307–324 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Heinig, G.: Stability of Toeplitz matrix inversion Formulas, in Structured Matrices in Mathematics, Computer Science, and Engineering II (V. Olshevsky, editor), Contemporary Mathematics, 281, AMS, Providence, RI, 101–116 (2001)

  32. Wen, Y.-W., Ng, M.K., Ching, W.-K., Liu, H.: A note on the stability of Toeplitz matrix inversion formulas. Appl. Math. Lett. 17(8), 903–907 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, Y.-L., Zhu, P.-Y., Gu, X.-M., Zhao, X.-L., Cao, J.: A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation. J. Comput. Appl. Math. 362, 99–115 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pestana, J.: Preconditioners for symmetrized Toeplitz and multilevel Toeplitz matrices. SIAM J. Matrix Anal. Appl. 40(3), 870–887 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Druinsky, A., Toledo, S.: How accurate is \(\mathtt{inv(A)*}{\varvec {b}}\)?, Technical report, Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel, 2012, 9 pages. Available online at arXiv:1201.6035

  36. Tian, W.Y., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84(294), 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Heinig, G., Rost, K.: Hartley transform representations of symmetric Toeplitz matrix inverses with application to fast matrix-vector multiplication. SIAM J. Matrix Anal. Appl. 22(1), 86–105 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cabay, S., Meleshko, R.: A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices. SIAM J. Matrix Anal. Appl. 14(3), 735–765 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful comments and suggestions that greatly improved the quality of this paper. This research is supported by NSFC (No. 11801463) and the Applied Basic Research Program of Sichuan Province (No. 2020YJ0007). The last author is a member of Gruppo Nazionale per il Calcolo Scientifico (GNCS) of Istituto Nazionale di Alta Matematica (INdAM), and this work was partially supported by INdAM-GNCS Project CUP_E55F22000270001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ming Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Gu, XM., Zhao, YL. et al. A note on the structured perturbation analysis for the inversion formula of Toeplitz matrices. Japan J. Indust. Appl. Math. 40, 645–663 (2023). https://doi.org/10.1007/s13160-022-00543-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00543-w

Keywords

Mathematics Subject Classification

Navigation