Skip to main content
Log in

Pattern formation of vascular network in a mathematical model of angiogenesis

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We discuss the characteristics of the patterns of the vascular networks in a mathematical model for angiogenesis. Based on recent in vitro experiments, this mathematical model assumes that the elongation and bifurcation of blood vessels during angiogenesis are determined by the density of endothelial cells at the tip of the vascular network, and describes the dynamical changes in vascular network formation using a system of simultaneous ordinary differential equations. The pattern of formation strongly depends on the supply rate of endothelial cells by cell division, the branching angle, and also on the connectivity of vessels. By introducing reconnection of blood vessels, the statistical distribution of the size of islands in the network is discussed with respect to bifurcation angles and elongation factor distributions. The characteristics of the obtained patterns are analysed using multifractal dimension and other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Risau, W.: Mechanisms of angiogenesis. Nature 386(6626), 671–674 (1997)

    Article  Google Scholar 

  2. Chung, A.S., Lee, J., Ferrara, N.: Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10(7), 505–514 (2010)

    Article  Google Scholar 

  3. Kerbel, R.S.: Tumor angiogenesis. N. Engl. J. Med. 358(19), 2039–2049 (2008)

    Article  Google Scholar 

  4. Zhang, L., Bhaloo, S.I., Ting, C., Zhou, B., Xu, Q.: Role of resident stem cells in vessel formation and arteriosclerosis. Circ. Res. 122(11), 1608–1624 (2018)

    Article  Google Scholar 

  5. Anderson, A.R.A., Chaplain, M.J.: Continuous and discrete mathematical models of tumorinduced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)

    Article  Google Scholar 

  6. Tong, S., Yuan, F.: Numerical simulations of angiogenesis in the cornea. Microvasc. Res. 61, 14–27 (2001)

    Article  Google Scholar 

  7. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., DiTalia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90(11), 118–101 (2003)

    Article  Google Scholar 

  8. Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J . 92, 3105–3121 (2007)

    Article  Google Scholar 

  9. Scianna, M., Preziosi, L.: Multiscale developments of the cellular potts model. Multiscale Model. Simul. 10, 342–382 (2012)

    Article  MathSciNet  Google Scholar 

  10. Secomb, T.W., Alberding, J.P., Deshirst, M.W., Pries, A.R.: Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput. Biol. 9, e1002,983 (2013)

    Article  MathSciNet  Google Scholar 

  11. Daub, J.T., Merks, M.H.: A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 75, 1377–1399 (2013)

    Article  MathSciNet  Google Scholar 

  12. Sugihara, K., Nishiyama, K., Fukuhara, S., Uemura, A., Arima, S., Kobayashi, R., Köhn- Luque, A., Mochizuki, N., Suda, T., Ogawa, H., Kurihara, H.: Autonomy and non-autonomy of angiogenic cell movements revealed by experiment-driven mathematical modeling. Cell Rep. 13, 1814–1827 (2015)

    Article  Google Scholar 

  13. Arima, S., Nishiyama, K., Ko, T., Arima, Y., Hakozaki, Y., Sugihara, K., Koseki, H., Uchijima, Y., Kurihara, Y., Kurihara, H.: Angeogenetic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Development 138, 4763–4776 (2011)

    Article  Google Scholar 

  14. Matsuya, K., Yura, F., Mada, J., Kurihara, H., Tokihiro, T.: A discrete mathematical model for angiogenesis. SIAM J. Appl. Math. 76, 2243–2259 (2016)

    Article  MathSciNet  Google Scholar 

  15. Mada, J., Matsuya, K., Yura, F., Kurihara, H., Tokihiro, T.: A mathematical modeling of angiogenesis [in japanese]. JSIAM 26, 105–123 (2016)

    MATH  Google Scholar 

  16. Takubo, N., Yura, F., Naemura, K., Yoshida, R., Tokunaga, T., Tokihiro, T., Kurihara, H.: Cohesive and anisotropic vascular endothelial cell motility driving angiogenic morphogenesis. Sci. Rep. 9. Article number 9304 (2019)

  17. Family, F., Masters, B.R., Platt, D.E.: Fractal patterns formation in human retinal vessels. Physica D 38, 98–103 (1989)

    Article  Google Scholar 

  18. Masters, B.R.: Fractal analysis of the vascular tree in the human retina. Ann. Rev. Biol. Eng. 6, 427–452 (2004)

    Article  Google Scholar 

  19. Mandelbrot, B.B.: The Fractal Geometry of Nature, W. H. Freeman and Co. (1982)

  20. Mandelbrot, B.B.: Fractals: Form, Chance and Dimension, W. H. Freeman and Co. (1977)

  21. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Amsterdam (2014)

    MATH  Google Scholar 

  22. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MathSciNet  Google Scholar 

  23. Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13, 634–649 (2009)

    Article  Google Scholar 

  24. Stošić, T., Stošić, B.D.: Multifractal analysis of human retinal vessles. IEEE Trans. Med. Imag. 25, 1101–1107 (2006)

    Article  Google Scholar 

  25. Salat, H., Murcio, R., Arcaute, E.: Multifractal methodology. Phys. A 473, 467–487 (2017)

    Article  MathSciNet  Google Scholar 

  26. Murray, C.D.: The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12(3), 207–214 (1926)

    Article  Google Scholar 

  27. Iizuka, O., Kawamura, S., Tero, A., Uemura, A., Miura, T.: Remodeling mechanisms determine size distributions in developing retinal vasculature. PLoS One (2020). https://doi.org/10.1371/journal.pone.0235373

    Article  Google Scholar 

  28. Okabe, K., Kobayashi, S., Yamad, T., Kurihara, T., Tai-Nagara, I., Miyamoto, T., Mukouyama, Y.S., Sato, T.N., Suda, T., Ema, M., Kubota, Y.: Neurons limit angiogenesis by titrating VEGF in retina. Cell 159, 584–596 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Hiroki Kurihara and Dr. Kazuo Tonami for helpful discussions about angiogenesis. They also would like to thank Dr. Tatsuya Hayashi and Mr. Kazuma Sakai for useful discussions on mathematical modelling, and Dr. Naoko Takubo for providing the photo image of Fig.1. TT is grateful for financial support to Arithmer Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mada, J., Tokihiro, T. Pattern formation of vascular network in a mathematical model of angiogenesis. Japan J. Indust. Appl. Math. 39, 351–384 (2022). https://doi.org/10.1007/s13160-021-00493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-021-00493-9

Keywords

Navigation