Skip to main content
Log in

An epidemic model on the dispersal networks at population and individual levels

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A network model at the population level and the individual level, which simulates both between-herd dynamics and within-herd dynamics, is formulated. We investigated effects of dispersal rates and local dynamics on the outcome of an epidemic at the population level. Numerical studies show that dispersal may strengthen spread of the disease on average, but lead to a less tendency for damped oscillation. Further, different types of clustering behaviors, from synchronized to completely desynchronized, are observed within our system. The results show that strengthening the coupling between farms via the immigration of infectives tends to enhance (in-phase) synchronization. Dynamic complexity, including chaotic, quasi-periodic or periodic behaviour, is observed in our model with varying the coupling strength. The main results help to explain differences in observed epidemiological patterns and to identify possible causes for different strains of Salmonella developing so much variation in their infection dynamics in UK dairy herds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akkina, J.E., et al.: Epidemiologic aspects, control, and importance of multiple-drug resistant Salmonella typhimurium DT104 in the United States. J. Am. Vet. Med. Assoc. 214, 790–798 (1999)

    Google Scholar 

  2. Bergh, O., Getz, W.M.: Stability of discrete age-structured and aggregated delay-difference population models. J. Math. Biol. 26, 551–581 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cooke, K., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davies, R.H.: Salmonella typhimurium DT104:has it had its day? Practice 23, 342–351 (2001)

    Article  Google Scholar 

  5. Davison, H.C., et al.: Prevalence, incidence and geographical distribution of serovars of Salmonella on dairy farms in England and Wales. Vet. Rec. 157, 703–711 (2005)

    Article  Google Scholar 

  6. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\); in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Earn, D.J.D., Rohani, P., Grenfell, B.T.: Persistence, chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. B 265, 7–10 (1998)

    Article  Google Scholar 

  8. Ferguson, N.M., Donnelly, C.A., Anderson, R.M.: The foot-andmouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292, 1155–1160 (2001)

    Article  Google Scholar 

  9. Fromont, E., Pontiera, D., Langlais, M.: Disease propagation in connected host populations with density-dependent dynamics: the case of the feline leukemia virus. J. Theor. Biol. 223, 465–475 (2003)

    Article  Google Scholar 

  10. Gibbens, J.C., et al.: Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. Vet. Rec. 149, 729–743 (2001)

    Google Scholar 

  11. Gilbert, M., Mitchell, A., Bourn, D., Mawdsley, J., Clifton- Hadley, R., Wint, W.: Cattle movements and bovine tuberculosis in Great Britain. Nature 435, 491–496 (2005)

    Article  Google Scholar 

  12. Gotelli, N.J.: A primer of ecology. Sinauer, Sunderland (1998)

    Google Scholar 

  13. Grenfell, B.T., Bjonstad, O.N., Kappey, J.: Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716–723 (2001)

    Article  Google Scholar 

  14. He, D., Stone, L.: Spatio-temporal synchronization of recurrent epidemics. Proc. R. Soc. Lond. Ser. B 270, 1519–1526 (2003)

    Article  Google Scholar 

  15. Hethcote, H.W., van den Driessche, P.: Two SIS epidemiologic models with delays. J. Math. Biol. 240, 3–26 (2000)

    Article  Google Scholar 

  16. Holland, M.D., Hastings, A.: Strong effect of dispersal network structure on ecological dynamics. Nature 456, 792–795 (2008)

    Article  Google Scholar 

  17. Kaneko, K.: Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Physica D 41, 137–172 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaneko, K.: Relevance of dynamic clustering to biological networks. Physica D 75, 55–73 (1994)

    Article  MATH  Google Scholar 

  19. Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B 266, 859–867 (1999)

    Article  Google Scholar 

  20. Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. B 264, 1149–1156 (1997)

    Article  Google Scholar 

  21. Mainar-Jaime, R.C., Thurmond, M.C., Berzal-Herranz, B., Hietala, S.K.: Seroprevalence of Neospora caninum and abortion in dairy cows in northern Spain. Vet. Rec. 145, 72–75 (1999)

    Article  Google Scholar 

  22. MAFF: Zoonoses Report United Kingdom 1999, 2000. Ministry of Agriculture. Fisheries and Food, UK (1999, 2000)

  23. Newman, M.E.J., Watts, D.J.: Scaling and percolation in the small-world network model. Phys. Rev. E 60, 7332–7342 (1999)

    Article  Google Scholar 

  24. Ruan, S., Wang, W., Levin, S.A.: The effect of global travel on the spread of SARS. Math. Biosci. Eng. 3, 205–218 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schouten, J.M., Bouwknegt, M., van de Giessen, A.W., Frankena, K., De Jong, M.C.M., Graat, E.A.M.: Prevalence estimation and risk factors for Escherichia coli O157 on Dutch dairy farms. Prev. Vet. Med. 64, 49–61 (2004)

    Article  Google Scholar 

  26. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. van Schaik, G., Dijkhuizen, A.A., Huirne, R.B.M., Schukken, Y.H., Nielen, M., Hage, H.J.: Risk factors for existence of bovine herpes virus 1 antibodies on nonvaccinating Dutch dairy farms. Prev. Vet. Med. 34, 125–136 (1998)

    Article  Google Scholar 

  28. Veterinary Laboratories Agency: Salmonella in Livestock Production in GB. VLA, Addlestore (1999, 2000, 2002)

  29. Wang, W.D., Zhao, X.-Q.: An epidemic model in a patchy environment. Math. Biosci. 190, 97–112 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, X., Xiao, Y., Wang, J., Lu, X.: A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in China. J. Theor. Biol. 293, 161–173 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  32. Wray, C., Davies, R.: Salmonella infections in cattle. In: Wray, C. (ed.) Salmonella in Domestic Animals, pp. 169–190. CABI Publishing, UK (2000)

    Chapter  Google Scholar 

  33. Xiao, Y., Bowers, R.G., Clancy, D., French, N.P.: Understanding the dynamics of Salmonella infections in dairy herds: a modelling approach. J. Theor. Biol. 233, 159–175 (2005)

    Article  MathSciNet  Google Scholar 

  34. Xiao, Y., Clancy, D., French, N.P., Bowers, R.G.: A semi-stochastic model for Salmonella infection in a multigroup herd. Math. Biosci. 200, 214–233 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xiao, Y., French, N., Bowers, R., Clancy, D.: Dynamics of infection with multiple transmission mechanisms in unmanaged/managed animal population. Theor. Popul. Biol. 71, 408–423 (2007)

    Article  MATH  Google Scholar 

  36. Xiao, Y., French, N., Bowers, R., Clancy, D.: Pair approximations and the inclusion of indirect transmission: theory and application to between farm transmission Salmonella. J. Theor. Biol. 244, 532–540 (2007)

    Article  MathSciNet  Google Scholar 

  37. Xiao, Y., Zhou, Y., Tang, S.: Modelling disease spread in dispersal networks at two levels. IMA J. Math. Appl. Med. Biol. 28, 227–244 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are supported by supported by the National Mega-project of Science Research (No. 2008ZX10001-003, YX), the National Natural Science Foundation of China NSFC (11171268 YX, 11571273 YX), and by the Fundamental Research Funds for the Central Universities (08143042 (YX)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Xiao.

Appendices

Appendix 1

1.1 Matrices contributing to the disease-free equilibrium \(E_0\)

Define a matrix M(z)

$$\begin{aligned} M(z)=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} B_1(z)-d_1+h_Sa_{11} &{} h_Sa_{12} &{} \cdots &{} h_Sa_{1n}\\ h_Sa_{21}&{} B_2(z)-d_2+h_Sa_{22} &{} \cdots &{} h_Sa_{2n}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ h_Sa_{n1}&{} h_Sa_{n2} &{} \cdots &{} B_n(z)-d_n+h_Sa_{nn} \end{array}\right) . \end{aligned}$$

for any non-negative constant z. And matrix B gives

$$\begin{aligned} B=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} h_Sa_{11}+b_1-d_1 &{} h_Sa_{12} &{} \cdots &{} h_Sa_{1n}\\ h_Sa_{21}&{} h_Sa_{22}+b_2-d_2 &{} \cdots &{} h_Sa_{2n}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ h_Sa_{n1}&{} h_Sa_{n2} &{} \cdots &{} h_Sa_{nn}+b_n-d_n \end{array}\right) . \end{aligned}$$

1.2 Matrices contributing to the next generation matrix H

$$\begin{aligned} \begin{array}{rl} F_1&{}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \beta _1 S_1^*&{} 0 &{} \cdots &{} 0\\ 0 &{} \beta _2 S_2^* &{} \cdots &{} 0\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{}0 &{} \cdots &{} \beta _n S_n^* \end{array}\right) , \quad F_2=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c } \nu _1 S_1^* &{} 0&{} \cdots &{} 0\\ 0 &{} \nu _2 S_2^*&{} \cdots &{} 0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{}0&{} \cdots &{} \nu _n S_n^* \\ \end{array}\right) , \\ V&{}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} D_1-h_Ia_{11} &{} -h_Ia_{12} &{} \cdots &{} -h_Ia_{1n}\\ -h_Ia_{21}&{} D_2-h_Ia_{22} &{} \cdots &{} -h_Ia_{2n}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ -h_Ia_{n1}&{} -h_Ia_{n2} &{} \cdots &{} D_n-h_ia_{nn} \end{array}\right) .\end{array} \end{aligned}$$

where \( D_i =d_i +\alpha _i +\gamma _i \), \( i=1,\ldots , n\).

$$\begin{aligned} \varLambda =\left( \begin{array}{ c@{\quad }c@{\quad }c@{\quad }c} \lambda _1 &{} 0 &{}\cdots &{}0 \\ 0&{} \lambda _2 &{} \cdots &{}0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0&{}0&{}\cdots &{}\lambda _n \\ \end{array}\right) , \quad Q=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \mu _1+\nu _1 S_1^* &{} 0 &{}\cdots &{}0\\ 0 &{} \mu _2+\nu _2 S_2^* &{} \cdots &{}0 \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0 &{}0 &{}0 &{} \mu _n+\nu _n S_n^*\\ \end{array}\right) , \end{aligned}$$

Appendix 2

The dispersal rates for the susceptibles, infectives and removeds are generated uniformly distributed to represent varying dispersal rates. In particular, we let \( h_S=2^{-2} rand(10,1)\); \(h_I= 2^{-2} rand(10,1); h_R= 2^{-2} rand(10,1)\). For Fig. 2b, the dispersal rates are \(h_b=(h_S, h_I, h_R)^T\), and

$$\begin{aligned} h_b=\left( \begin{array}{ cccccccccc} 0.1038 &{} 0.0762 &{} 0.2186 &{} 0.0038 &{} 0.1920 &{} 0.2427 &{} 0.2475 &{} 0.1972 &{} 0.1097 &{} 0.1246 \\ 0.0535 &{} 0.1609 &{} 0.0800 &{} 0.2400 &{} 0.1817 &{} 0.1030 &{} 0.1861 &{} 0.0670 &{} 0.1100 &{} 0.2333 \\ 0.1708&{} 0.0531 &{} 0.2098 &{} 0.1572 &{} 0.0334 &{} 0.0518 &{} 0.1518 &{} 0.1575 &{} 0.0926 &{} 0.1438 \\ \end{array}\right) \end{aligned}$$

For Fig. 2c, the dispersal rates are \(h_c=(h_S, h_I, h_R)^T\), and

$$\begin{aligned} h_c=\left( \begin{array}{ cccccccccc} 0.0303 &{} 0.1127 &{} 0.1790 &{} 0.2232 &{} 0.0683 &{} 0.0637 &{} 0.2164 &{} 0.0581 &{} 0.2012 &{} 0.2271 \\ 0.0580 &{} 0.0598 &{} 0.0124 &{} 0.0196 &{} 0.1602 &{} 0.0477 &{} 0.2110 &{} 0.0435 &{} 0.0427 &{} 0.2486 \\ 0.1099 &{} 0.0850 &{} 0.0786 &{} 0.0913 &{} 0.0983 &{} 0.1479 &{} 0.0299 &{} 0.0095 &{} 0.1146 &{} 0.2175\\ \end{array}\right) \end{aligned}$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiao, Y. An epidemic model on the dispersal networks at population and individual levels. Japan J. Indust. Appl. Math. 32, 641–659 (2015). https://doi.org/10.1007/s13160-015-0189-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0189-1

Keywords

Mathematics Subject Classification

Navigation