Skip to main content

Advertisement

Log in

Dissolved Organic Matter Export from Surface Sediments of a New England Salt Marsh

  • General Wetland Science
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Salt marshes sequester a large amount of carbon via sedimentation, but seasonal and climate change impacts on sediment carbon biogeochemistry are not well-understood. This study investigates the export of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) from New England salt marsh sediment seasonally and under possible expected drought conditions. Surface sediment total organic carbon (TOC) values shifted seasonally depending on the overlying dominant plant species suggesting that vegetation and inundation frequency and duration are key factors in sediment TOC fluctuations. Fall sediment samples leached more DOC than summer samples, were compositionally similar to the estuarine water column, and compositionally different from fresh plant matter. Thus, the seasonal TOC pulse incorporated into surface sediments could be a dominant source of DOC to the estuary in the fall and that summer contributions are presumed to be from upstream DOM sources based on optical properties. Sediments leached more DOC under drought than non-drought conditions due to induced cracking in the sediment enhancing organic matter degradation. This study suggests the majority of DOM exported laterally from salt marshes comes from surface sediments (versus plant matter) and that temperature and sea-level rise could affect seasonal and drought pulses of DOC from the marsh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam P (2002) Saltmarshes in a time of change. Environmental Conservation 29(01):39–61

    Google Scholar 

  • Amaral V, Graeber D, Calliari D, Alonso C (2016) Strong linkages between DOM optical properties and main clades of aquatic bacteria. Limnology and Oceanography 61:906–918

    CAS  Google Scholar 

  • Andrew AA, Del Vecchio R, Subramaniam A, Blough NV (2013) Chromophoric dissolved organic matter (CDOM) in the equatorial Atlantic Ocean: optical properties and their relation to CDOM structure and source. Marine Chemistry 148:33–43

    CAS  Google Scholar 

  • Ardón M, Helton AM, Bernhardt ES (2016) Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry 127(2–3):411–426

    Google Scholar 

  • Artigas F, Shin JY, Hobble C, Marti-Donati A, Schäfer KV, Pechmann I (2015) Long term carbon storage potential and CO 2 sink strength of a restored salt marsh in New Jersey. Agricultural and Forest Meteorology 200:313–321

    Google Scholar 

  • Ashall LM, Mulligan RP, van Proosdij D, Poirier E (2016) Application and validation of a three-dimensional hydrodynamic model of a macrotidal salt marsh. Coastal Engineering 114:35–46

    Google Scholar 

  • Bai J, Ouyang H, Deng W, Zhu Y, Zhang X, Wang Q (2005) Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma 124(1–2):181–192

    CAS  Google Scholar 

  • Baker R, Fry B, Rozas LP, Minello TJ (2013) Hydrodynamic regulation of salt marsh contributions to aquatic food webs. Marine Ecology Progress Series 490:37–52

    CAS  Google Scholar 

  • Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA (2013) The changing carbon cycle of the coastal ocean. Nature 504(7478):61–70

    CAS  PubMed  Google Scholar 

  • Baumann H, Wallace RB, Tagliaferri T, Gobler CJ (2015) Large natural pH, CO2 and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries and Coasts 38(1):220–231

    CAS  Google Scholar 

  • Benner R, Biddanda B (1998) Photochemical transformations of surface and deep marine dissolved organic matter: effects on bacterial growth. Limnology and Oceanography 43(6):1373–1378

    CAS  Google Scholar 

  • van Bergen PF, Nott CJ, Bull ID, Poulton PR, Evershed RP (1998) Organic geochemical studies of soils from the Rothamsted classical experiments—IV. Preliminary results from a study of the effect of soil pH on organic matter decay. Organic Geochemistry 29(5):1779–1795

    Google Scholar 

  • Bertness MD, Ellison AM (1987) Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57(2):129–147

    Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proceedings of the National Academy of Sciences 108(49):19473–19481

    CAS  Google Scholar 

  • Bittar TB, Berger SA, Birsa LM, Walters TL, Thompson ME, Spencer RG, Mann EL, Stubbins A, Frischer ME, Brandes JA (2016) Seasonal dynamics of dissolved, particulate and microbial components of a tidal saltmarsh-dominated estuary under contrasting levels of freshwater discharge. Estuarine, Coastal and Shelf Science 182:72–85

    CAS  Google Scholar 

  • Blough, N.V. and Del Vecchio, R., 2002. Chromophoric DOM in the Coastal Environment-Chapter 10

  • Bouillon S, Borges AV, Castañeda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22(2)

  • Bowen, J.C., Clark, C.D., Keller, J.K. and De Bruyn, W.J., 2016. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and porewaters adjacent to an oil well in a southern California salt marsh. Marine Pollution Bulletin

  • Boyle ES, Guerriero N, Thiallet A, Vecchio RD, Blough NV (2009) Optical properties of humic substances and CDOM: relation to structure. Environmental Science & Technology 43(7):2262–2268

    CAS  Google Scholar 

  • Breithaupt JL, Smoak JM, Smith TJ, Sanders CJ, Hoare A (2012) Organic carbon burial rates in mangrove sediments: strengthening the global budget. Global Biogeochemical Cycles 26(3)

  • Bryan KR, Nardin W, Mullarney JC, Fagherazzi S (2017) The role of cross-shore tidal dynamics in controlling intertidal sediment exchange in mangroves in Cù Lao dung, Vietnam. Continental Shelf Research 147:128–143

    Google Scholar 

  • Burger J, Gochfeld M, Niles LJ (1995) Ecotourism and birds in coastal New Jersey: contrasting responses of birds, tourists, and managers. Environmental Conservation 22(1):56–65

    Google Scholar 

  • Ceballos DS, Frangi J, Jobbágy EG (2013) Soil volume and carbon storage shifts in drained and afforested wetlands of the Paraná River Delta. Biogeochemistry 112(1–3):359–372

    CAS  Google Scholar 

  • Chen RF (1999) In situ fluorescence measurements in coastal waters. Organic Geochemistry 30:397–409

    Google Scholar 

  • Chen RF, Gardner GB (2004) High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions. Marine Chemistry 89(1):103–125

    CAS  Google Scholar 

  • Chen S, Torres R, Goñi MA (2016) The role of salt marsh structure in the distribution of surface sedimentary organic matter. Estuaries and Coasts 39(1):108–122

    CAS  Google Scholar 

  • Childers, D.L., Day Jr, J.W. and Mckellar Jr, H.N., 2002. Twenty more years of marsh and estuarine flux studies: revisiting Nixon (1980). In Concepts and controversies in tidal marsh ecology (pp. 391-423). Springer Netherlands

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17(4)

  • Clark CD, Aiona P, Keller JK, De Bruyn WJ (2014) Optical characterization and distribution of chromophoric dissolved organic matter (CDOM) in soil porewater from a salt marsh ecosystem. Marine Ecology Progress Series 516:71–83

    CAS  Google Scholar 

  • Climate Data 2019. https://en.climate-data.org/north-america/united-states-of-america/north-dakota/new-england-130014/. Accessed July 2019

  • Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews 107(2):402–418

    CAS  PubMed  Google Scholar 

  • Cronan, C.S., 1990. Patterns of organic acid transport from forested watersheds to aquatic ecosystems. Organic acids in aquatic ecosystems, pp.245-260

  • Davis SE, Childers DL, Noe GB (2006) The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation. Hydrobiologia 569(1):87–97

    CAS  Google Scholar 

  • Del Vecchio R, Blough NV (2004) Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the middle Atlantic bight. Marine Chemistry 89(1):169–187

    Google Scholar 

  • Detenbeck NE, Morrison AC, Abele RW, Kopp DA (2016) Spatial statistical network models for stream and river temperature in New England, USA. Water Resources Research 52(8):6018–6040

    Google Scholar 

  • Dittmar T, Lara RJ (2001) Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazonia, Brazil). Geochimica et Cosmochimica Acta 65(9):1417–1428

    CAS  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5):293–297

    CAS  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2(1):1–8

    CAS  Google Scholar 

  • Emery HE, Fulweiler RW (2014) Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquatic Botany 116:83–92

    Google Scholar 

  • Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D'Alpaos A, van de Koppel J, Rybczyk JM, Reyes E, Craft C, Clough J (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Reviews of Geophysics 50(1)

  • Ferrari GM (2000) The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (gulf of lions). Marine Chemistry 70(4):339–357

    CAS  Google Scholar 

  • Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnology and Oceanography 57(5):1453–1466

    CAS  Google Scholar 

  • Findell KL, Delworth TL (2005) A modeling study of dynamic and thermodynamic mechanisms for summer drying in response to global warming. Geophysical Research Letters 32(16)

  • Furukawa, Y., Smith, A. C., Kostka, J. E., Watkins, J., & Alexander, C. R. (2004). Quantification of macrobenthic effects on diagenesis using a multicomponent inverse model in salt marsh sediments. Limnology and oceanography, 49(6), 2058-2072.

  • Gao JH, Feng ZX, Chen L, Wang YP, Bai F, Li J (2016) The effect of biomass variations of Spartina alterniflora on the organic carbon content and composition of a salt marsh in northern Jiangsu Province, China. Ecological Engineering 95:160–170

    Google Scholar 

  • Gardner GB, Chen RF, Berry A (2005) High-resolution measurements of chromophoric dissolved organic matter (CDOM) in the Neponset River estuary, Boston Harbor, MA. Marine Chemistry 96(1):137–154

    CAS  Google Scholar 

  • Gopal B (1999) Natural and constructed wetlands for wastewater treatment: potentials and problems. Water Science and Technology 40(3):27–35

    CAS  Google Scholar 

  • Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91(10):2850–2861

    PubMed  Google Scholar 

  • Harvey ET, Kratzer S, Andersson A (2015) Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. Ambio 44(3):392–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayhoe K, Wake CP, Huntington TG, Luo L, Schwartz MD, Sheffield J, Wood E, Anderson B, Bradbury J, DeGaetano A, Troy TJ (2007) Past and future changes in climate and hydrological indicators in the US northeast. Climate Dynamics 28(4):381–407

    Google Scholar 

  • Hazelden J, Boorman LA (1999) The role of soil and vegetation processes in the control of organic and mineral fluxes in some western European salt marshes. Journal of Coastal Research, pp.:15–31

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27(5):195–212

    CAS  Google Scholar 

  • Hemmond HF, Fifield JL (1982) Subsurface flow in salt marsh peat: a model and field study. Limnology and Oceanography 27(1):126–136

    Google Scholar 

  • Henry KM (2012) Linking nitrogen biogeochemistry to different stages of wetland soil development in the Mississippi River Delta, Louisiana. Doctoral dissertation, University of Rhode Island

    Google Scholar 

  • Henry KM, Twilley RR (2013) Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research 29(6):1273–1283

    Google Scholar 

  • Hinton MJ, Schiff SL, English MC (1997) The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian shield catchments. Biogeochemistry 36(1):67–88

    CAS  Google Scholar 

  • Huang W, Chen RF (2009) Sources and transformations of chromophoric dissolved organic matter in the Neponset River watershed. Journal of Geophysical Research: Biogeosciences 114(G4)

  • Huang L, Bai J, Gao H, Xiao R, Liu P, Chen B (2013) Soil organic carbon content and storage of raised field wetlands in different functional zones of a typical shallow freshwater lake, China. Soil Research 50(8):664–671

    Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53(1):51–77

    Google Scholar 

  • Johnson NM, Likens GE, Bormann FH, Fisher DW, Pierce RS (1969) A working model for the variation in stream water chemistry at the Hubbard brook experimental Forest, New Hampshire. Water Resources Research 5(6):1353–1363

    CAS  Google Scholar 

  • Kirwan ML, Murray AB (2007) A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences 104(15):6118–6122

    CAS  Google Scholar 

  • Knorr KH, Blodau C (2009) Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biology and Biochemistry 41(6):1187–1198

    CAS  Google Scholar 

  • Kothawala DN, Murphy KR, Stedmon CA, Weyhenmeyer GA, Tranvik LJ (2013) Inner filter correction of dissolved organic matter fluorescence. Limnology and Oceanography: Methods 11(12):616–630

    Google Scholar 

  • Kramer MG, Sanderman J, Chadwick OA, Chorover J, Vitousek PM (2012) Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Global Change Biology 18(8):2594–2605

    Google Scholar 

  • Loh PS, Cheng LX, Yuan HW, Yang L, Lou ZH, Jin AM, Chen XG, Lin YS, Chen CTA (2018) Impacts of human activity and extreme weather events on sedimentary organic matter in the Andong salt marsh, Hangzhou Bay, China. Continental Shelf Research 154:55–64

    Google Scholar 

  • Macreadie PI, Hughes AR, Kimbro DL (2013) Loss of ‘blue carbon’from coastal salt marshes following habitat disturbance. PloS one 8(7):e69244

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKee KL, Mendelssohn IA, Materne D, M. (2004) Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography 13(1):65–73

    Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10):552–560

    Google Scholar 

  • Medeiros PM, Seidel M, Ward ND, Carpenter EJ, Gomes HR, Niggemann J, Krusche AV, Richey JE, Yager PL, Dittmar T (2015) Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Global Biogeochemical Cycles 29(5):677–690

    CAS  Google Scholar 

  • Meyer JL, Wallace JB, Eggert SL (1998) Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1(3):240–249

    CAS  Google Scholar 

  • Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, Van Wesenbeeck BK, Wolters G, Jensen K, Bouma TJ, Miranda-Lange M, Schimmels S (2014) Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience 7(10):727

    Google Scholar 

  • Morris JT, Sundberg K, Hopkinson CS (2013) Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and north inlet, South Carolina, USA. Oceanography 26(3):78–84

    Google Scholar 

  • Morrison AC, Gold AJ, Pelletier MC (2016) Evaluating key watershed components of low flow regimes in New England streams. Journal of Environmental Quality 45(3):1021–1028

    CAS  PubMed  Google Scholar 

  • Morrissey EM, Gillespie JL, Morina JC, Franklin RB (2014) Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global Change Biology 20(4):1351–1362

    PubMed  Google Scholar 

  • Mudd SM, Howell SM, Morris JT (2009) Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82(3):377–389

    CAS  Google Scholar 

  • Mueller RC, Gallegos-Graves L, Zak DR, Kuske CR (2016) Assembly of active bacterial and fungal communities along a natural environmental gradient. Microbial Ecology 71(1):57–67

    PubMed  Google Scholar 

  • Mueller P, Granse D, Nolte S, Do HT, Weingartner M, Hoth S, Jensen K (2017) Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils. Ecological Applications 27:1435–1450

    PubMed  Google Scholar 

  • Nelson, J., 2017. Salt-marsh plants as potential sources of Hg0 into the atmosphere. Atmospheric environment

  • NOAA, 2016. National Oceanic and Atmospheric Administration Temperature Data. Accessed at: https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00014739/detail

  • Odum EP (1980) The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, lateral flux, and detritus-based food chains. Estuarine Perspectives. Academic Press, New Yor, pp 485–495

    Google Scholar 

  • Osburn CL, Mikan MP, Etheridge JR, Burchell MR, Birgand F (2015) Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary. Journal of Geophysical Research: Biogeosciences 120(7):1430–1449

    CAS  Google Scholar 

  • Osland MJ, Spivak AC, Nestlerode JA, Lessmann JM, Almario AE, Heitmuller PT, Russell MJ, Krauss KW, Alvarez F, Dantin DD, Harvey JE (2012) Ecosystem development after mangrove wetland creation: plant–soil change across a 20-year chronosequence. Ecosystems 15(5):848–866

    CAS  Google Scholar 

  • Palomo, I., Montes, C., Martín-López, B., González, J.A., García-Llorente, M., Alcorlo, P. and Mora, M.R.G., 2014. Incorporating the social–ecological approach in protected areas in the Anthropocene. BioScience, p.bit033

  • Pellegrini E, Floreani F, Cortin M, De Nobili M (2015) Methane and carbon dioxide fluxes from Limonium residues decomposition in saltmarsh soils: effects of tide regime. EQA-International Journal of Environmental Quality 18(1):21–28

    Google Scholar 

  • Pisani O, Gao M, Maie N, Miyoshi T, Childers DL, Jaffé R (2018) Compositional aspects of herbaceous litter decomposition in the freshwater marshes of the Florida Everglades. Plant and Soil 423(1–2):87–98

    CAS  Google Scholar 

  • Qu W, Li J, Han G, Wu H, Song W, Zhang X (2018) Effect of salinity on the decomposition of soil organic carbon in a tidal wetland. Journal of Soils and Sediments, pp.:1–9

  • Redfield AC (1965) Ontogeny of a salt marsh estuary. Science 147(3653):50–55

    CAS  PubMed  Google Scholar 

  • Redfield AC (1972) Development of a New England salt marsh. Ecological Monographs 42(2):201–237

    Google Scholar 

  • Reef R, Spencer T, Mӧller I, Lovelock CE, Christie EK, McIvor AL, Evans BR, Tempest JA (2017) The effects of elevated CO 2 and eutrophication on surface elevation gain in a European salt marsh. Global Change Biology 23(2):881–890

    PubMed  Google Scholar 

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD (2012) Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry 49:124–131

    CAS  Google Scholar 

  • Rochelle-Newall E, Hulot FD, Janeau JL, Merroune A (2014) CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems. Environmental Monitoring and Assessment 186(1):589–596

    CAS  PubMed  Google Scholar 

  • Roussel EG, Cragg BA, Webster G, Sass H, Tang X, Williams AS, Gorra R, Weightman AJ, Parkes RJ (2015) Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes. FEMS Microbiology Ecology 91(8)

  • Schiebel HN, Wang X, Chen RF, Peri F (2015) Photochemical release of dissolved organic matter from resuspended salt marsh sediments. Estuaries and Coasts 38(5):1692–1705

    CAS  Google Scholar 

  • Schiebel HN, Gardner GB, Wang X, Peri F, Chen RF (2018) Seasonal export of dissolved organic matter from a New England salt marsh. Journal of Coastal Research 344:939–954

    Google Scholar 

  • Schiff SL, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ (1997) Export of DOC from forested catchments on the Precambrian shield of Central Ontario: clues from 13 C and 14 C. Biogeochemistry 36(1):43–65

    CAS  Google Scholar 

  • Schile LM, Callaway JC, Morris JT, Stralberg D, Parker VT, Kelly M (2014) Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS One 9(2):e88760

    PubMed  PubMed Central  Google Scholar 

  • Serna A, Richards JH, Scinto LJ (2013) Plant decomposition in wetlands: effects of hydrologic variation in a re-created Everglades. Journal of Environmental Quality 42(2):562–572

    CAS  PubMed  Google Scholar 

  • Short FT, Burdick DM, Short CA, Davis RC, Morgan PA (2000) Developing success criteria for restored eelgrass, salt marsh and mud flat habitats. Ecological Engineering 15(3–4):239–252

    Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. In: Intergovernmental panel on climate change, working group I contribution to the IPCC fifth assessment report (AR5). York, New

    Google Scholar 

  • Stralberg D, Brennan M, Callaway JC, Wood JK, Schile LM, Jongsomjit D, Kelly M, Parker VT, Crooks S (2011) Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay. PloS one 6(11):e27388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Li X, Luo Y, Li G, Khan S (2016) Spectroscopic characterization of dissolved organic matter derived from different biochars and their polycylic aromatic hydrocarbons (PAHs) binding affinity. Chemosphere 152:399–406

    CAS  PubMed  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L (2013) Ground water and climate change. Nature Climate Change 3(4):322

    Google Scholar 

  • Temmerman S, Moonen P, Schoelynck J, Govers G, Bouma TJ (2012) Impact of vegetation die-off on spatial flow patterns over a tidal marsh. Geophysical Research Letters 39(3)

  • Tremblay L, Benner R (2006) Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus. Geochimica et Cosmochimica Acta 70(1):133–146

    CAS  Google Scholar 

  • Turner GK (1985) Measurement of light from chemical or biochemical reactions. Bioluminescence and Chemiluminescence: Instruments and Applications 1:43–78

    CAS  Google Scholar 

  • Tzortziou M, Neale PJ, Osburn CL, Megonigal JP, Maie N, Jaffé R (2008) Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnology and Oceanography 53(1):148

    CAS  Google Scholar 

  • Tzortziou M, Neale PJ, Megonigal JP, Pow CL, Butterworth M (2011) Spatial gradients in dissolved carbon due to tidal marsh lateral flux into a Chesapeake Bay estuary. Marine Ecology Progress Series 426:41–56

    CAS  Google Scholar 

  • U.S. Geological Survey, 2019. National Water Information System data available on the World Wide Web (Water Data for the Nation http://nwis.waterdata.usgs.gov/usa/nwis/uv/?cb_00060=onandcb_00065=onandformat=htmlandperiod=andbegin_date=2013-10-01andend_date=2013-12-31andsite_no=011055566)

  • Valiela I, Teal JM, Allen SD, Van Etten R, Goehringer D, Volkmann S (1985) Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89(1):29–54

    CAS  Google Scholar 

  • Valiela I, Lloret J, Bowyer T, Miner S, Remsen D, Elmstrom E, Cogswell C, Thieler ER (2018) Transient coastal landscapes: rising sea level threatens salt marshes. Science of the Total Environment 640:1148–1156

    PubMed  Google Scholar 

  • Vantrepotte V, Danhiez FP, Loisel H, Ouillon S, Mériaux X, Cauvin A, Dessailly D (2015) CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation. Optics Express 23(1):33–54

    CAS  PubMed  Google Scholar 

  • Wagner S, Jaffé R (2015) Effect of photodegradation on molecular size distribution and quality of dissolved black carbon. Organic Geochemistry 86:1–4

    CAS  Google Scholar 

  • Wang X, Chen RF, Cable JE, Cherrier J (2014) Leaching and microbial degradation of dissolved organic matter from salt marsh plants and seagrasses. Aquatic Sciences 76(4):595–609

    Google Scholar 

  • Wang ZA, Kroeger KD, Ganju NK, Gonneea ME, Chu SN (2016) Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography 61(5):1916–1931

    CAS  Google Scholar 

  • Watson EB, Szura K, Wigand C, Raposa KB, Blount K, Cencer M (2016) Sea level rise, drought and the decline of Spartina patens in New England marshes. Biological Conservation 196:173–181

    Google Scholar 

  • Weston NB, Dixon RE, Joye SB (2006) Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research: Biogeosciences 111(G1)

  • Wilson AM, Evans TB, Moore WS, Schutte CA, Joye SB (2015) What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. Water Resources Research 51(6):4198–4207

    Google Scholar 

  • Wu G, Li H, Liang B, Shi F, Kirby JT, Mieras R (2017) Subgrid modeling of salt marsh hydrodynamics with effects of vegetation and vegetation zonation. Earth Surface Processes and Landforms 42(12):1755–1768

    Google Scholar 

  • Yang L, Guo W, Chen N, Hong H, Huang J, Xu J, Huang S (2013) Influence of a summer storm event on the flux and composition of dissolved organic matter in a subtropical river, China. Applied Geochemistry 28:164–171

    CAS  Google Scholar 

  • Yelverton GF, Hackney CT (1986) Flux of dissolved organic carbon and porewater through the substrate of a Spartina alterniflora marsh in North Carolina. Estuarine, Coastal and Shelf Science 22(2):255–267

    CAS  Google Scholar 

  • Zepp RG, Erickson Iii DJ, Paul ND, Sulzberger B (2007) Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochemical & Photobiological Sciences 6(3):286–300

    CAS  Google Scholar 

  • Zepp RG, Erickson Iii DJ, Paul ND, Sulzberger B (2011) Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochemical & Photobiological Sciences 10(2):261–279

    CAS  Google Scholar 

  • Zhao Q, Bai J, Liu Q, Lu Q, Gao Z, Wang J (2016) Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China. Wetlands 36(1):145–152

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Byers Kadow for his sampling efforts and Environmental Analytical Facility for their expertise and TOC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayley N. Schiebel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiebel, H.N., Peri, F. & Chen, R.F. Dissolved Organic Matter Export from Surface Sediments of a New England Salt Marsh. Wetlands 40, 693–705 (2020). https://doi.org/10.1007/s13157-019-01213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-019-01213-3

Keywords

Navigation