Skip to main content

Advertisement

Log in

Seasonal Species Variation of Sediment Organic Carbon Stocks in Salt Marshes of Tuticorin Area, Southern India

  • Ecosystem Services of Wetlands
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Increasing attention in global blue carbon investigation in these contemporary times, salt marsh has the distinctive importance in coastal ecosystems. We examined sediment organic carbon stock in the four dominant salt marsh species areas viz. Suaeda maritima, Sesuvium portulacastrum, Arthrocnemum indicum, and Salicornia brachiata from Tuticorin, southeast coast of India in two seasons i.e. dry (July 2015) and wet season (January 2016). We examined above ground (AGB) and below ground biomass (BGB), sediment physico-chemical properties like pH, BD, composition, OM%, Corg%, C and N%, sediment organic carbon stocks (SOCS) and multivariate analysis on studied variables. Maximum AGB was recorded in A. indicum in both dry and wet season (10.91 ± 0.15 g/cm2 and 14.87 ± 0.68 g/cm2). The highest BGB was observed in S. maritima in both seasons, as 2.01 ± 0.35 g/cm2 and 4.49 ± 0.35 g/cm2, respectively. The OM percentage ranged between 4.13 ± .083 and 7.23 ± .088% and the highest was observed in the wet season from S. maritima. Sediment organic stocks (Mg ha −1) ranged from 8.42 ± .640 to 54.46 ± 1.46 Mg ha −1 reflects nearly 7 times higher than the dry season. The present study can be useful for the estimation of blue carbon budgets in tropical coastal ecosystem since this type was the first hand information from this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aysha A, Abu Hena MK, Mishra M, Nesarul MH, Padhi BK, Mishra SK, Islam MS, Idris MH, Masum MB (2015) Sediment and carbon accumulation in sub-tropical salt marsh and mangrove habitats of north-eastern coast of bay of Bengal, Indian Ocean. Int J Fish Aquat Stud 2(4):184–189

    Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecological Monographs 81:169–193

    Article  Google Scholar 

  • Bashour I, Sayegh HA (2007) Methods of analysis for soils of arid and semi-arid regions. Food and Agriculture Organization of the United Nations, Rome p119

  • Baskar V, Madhanraj P, Panneerselvam A (2017) Studies on the Actinomycetes in salt Pan of South East Coast of India. Journal of Microbiology and Biotechnology Research 2(6):882–887

    Google Scholar 

  • Baustian MM, Stagg CL, Perry CL, Moss LC, Carruthers TJ, Allison M (2017) Relationships between salinity and short-term soil carbon accumulation rates from marsh types across a landscape in the Mississippi River Delta. Wetlands 37(2):313–324

    Article  Google Scholar 

  • Beaumont NJ, Jones L, Garbutt A, Hansom JD, Toberman M (2014) The value of carbon sequestration and storage in coastal habitats. Estuarine, Coastal and Shelf Science 137:32–40

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of north American wetlands. Wetlands 26(4):889–916

    Article  Google Scholar 

  • Buchanan JB (1984) Sediment analysis. In: Holme NA, McIntyre AD (eds) Methods for the studyof marine Benthos. IBP no. 16, 2nd edn. Blackwell Scientific Publications, p 387

  • Burden A, Garbutt RA, Evans CD, Jones DL, Cooper DM (2013) Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment. Estuarine, Coastal and Shelf Science 120:12–20

    Article  CAS  Google Scholar 

  • Burrows MT, Kamenos NA, Hughes DJ, Stahl H, Howe JA, and Tett P (2014) Assessment of carbon budgets and potential blue carbon stores in Scotland’s coastal and marine environment Scottish Natural Heritage Commissioned Report No 761

  • Carnero-Bravo V, Sanchez-Cabeza JA, Ruiz-Fernández AC, Merino-Ibarra M, Corcho-Alvarado JA, Sahli H, Hélie JF, Preda M, Zavala-Hidalgo J, Díaz-Asencio M, Hillaire-Marcel C (2018) Sea level rise sedimentary record and organic carbon fluxes in a low-lying tropical coastal ecosystem. CATENA 162:421–430

    Article  CAS  Google Scholar 

  • Cartaxana P, Catarino F (1997) Allocation of nitrogen and carbon in an estuarine salt marsh in Portugal. Journal of Coastal Conservation 3:27–34

    Article  Google Scholar 

  • Chen W, Ge ZM, Fei BL, Zhang C, Liu QX, Zhang LQ (2017) Soil carbon and nitrogen storage in recently restored and mature native Scirpus marshes in the Yangtze estuary. China: Implications for restoration Ecol Eng 104:150–157

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17:1111. https://doi.org/10.1029/2002GB001917

    Article  CAS  Google Scholar 

  • Contreras-Cruzado I et al (2017) Relationships between spatio-temporal changes in the sedimentary environment and halophytes zonation in salt marshes. Geoderma 305:173–187

    Article  Google Scholar 

  • Dahl M, Deyanova D, Gutschow S, Asplund ME, Lyimo LD, Karamfilov V, Santos R, Bjork M, Gullstrom M (2016) Sediment properties as important predictors of carbon storage in Zostera marina meadows: a comparison of four European areas. PLoS One 11:e0167493

    Article  Google Scholar 

  • Das S, Zaman S, Pramanick P, Pal N, Mitra A (2015) Suaeda maritima: a potential carbon reservoir of coastal zone. International advanced research journal in science. Engineering and Technology 2(5):61–65

    Google Scholar 

  • Drake K, Halifax H, Adamowicz SC, Craft C (2015) Carbon sequestration in tidal salt marshes of the Northeast United States. Environmental Management 56(4):998–1008

    Article  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 1:173–180

    Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marba N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3(11):961–968

    Article  CAS  Google Scholar 

  • Elsey-Quirk T, Seliskar DM, Sommersfield CK, Gallagher JL (2011) Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: sea level rise implications. Wetlands 31:87–99

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17:71–84

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5:505–509

    Article  CAS  Google Scholar 

  • Hansen K, Butzeck C, Eschenbach A, Grongroft A, Jensen K, Pfeiffer EM (2017) Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany). Journal of Soils and Sediments 17(1):47–60

    Article  CAS  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation:an assessment and speculative synthesis. Marine Chemistry 49:81–115

    Article  CAS  Google Scholar 

  • Hinson AL, Feagin RA et al (2017) The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Global Change Biology. https://doi.org/10.1111/gcb.1381

  • Hughes RG (2004) Climate change and loss of saltmarshes: consequences for birds. Ibis 146(suppl 1):21–28

    Article  Google Scholar 

  • Jagtap TG, Bhosale SH, Nagle VL (2002) Ecological observations on major Salicornia beds from highly saline coastal wetlands of India. Wetlands 22(3):443–450

    Article  Google Scholar 

  • Jana H, Zaman S, Chakraborty S, Pramanick P, Mondal KC, Mitra A (2013) Spatiotemporal variation of stored carbon in Porteresia coarctata along the east and west coast of India. International journal of engineering and management. Sciences 4(3):377–381

    Google Scholar 

  • Kathiresan K, Ramanathan T (2004) Salt marsh and other coastal flora. Biodiversity in mangrove ecosystems: UNU-INWEH-UNESCO International Training Course. Annamalai University, Sabanayagam Printers, 179–190

  • Kauffman JB, Heider C, Norfolk J, Payton F (2014) Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications 24(3):518–527

    Article  Google Scholar 

  • Kim DH, Kim JH, Park JH, Ewane EB, Lee DH (2016) Correlation between above-ground and below-ground biomass of 13-year-old Pinusdensiflora S. et Z. plantsed in a post-fire area in Samcheok. Forest Science and Technology 12(3):115–124

    Article  Google Scholar 

  • Krishnan M, Sivanandham V, Hans-Uwe D, Murugaiah SG, Seeni P, Gopalan S, Rathinam AJ (2015) Antifouling assessments on biogenic nanoparticles: a field study from polluted offshore platform. Marine Pollution Bulletin 101(2):816–825

    Article  CAS  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic matter dynamics in mangrove ecosystems. Aquatic Botany 89:201–219

    Article  CAS  Google Scholar 

  • Kumar R, Pandey S, Pendey A (2006) Plants roots and carbon sequestration. Current Science 91:885–890

    CAS  Google Scholar 

  • Lal R, Kimble JM (2000) Pedogenic carbonate and the global carbon cycle. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Golbal climate change and Pedogenic. CRC Press, Boca Raton, pp 1–14

    Google Scholar 

  • Lewis CJ, Carnell PE, Sanderman J, Baldock JA, Macreadie PI (2017) Variability and vulnerability of coastal blue carbon stocks: a case study from Southeast Australia. Ecosystems 21:1–17. https://doi.org/10.1007/s10021-017-0150-z

    Article  CAS  Google Scholar 

  • Li X, Bellerby R, Craft C, Widney SE (2018) Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts 1(0):1–15

    Article  Google Scholar 

  • Liu JE, Han RM, Su HR, Wu YP, Zhang LM, Richardson CJ, Wang GX (2017) Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu. China Ecological Engineering 106:132–139

    Article  Google Scholar 

  • Lokhande VH, Gor BK, Desai NS, Nikam TD, Suprasanna P (2013) Sesuvium portulacastrum, a plants for drought, salt stress, sand fixation, food and phytoremediation. A review. Agronomy for Sustainable Development 33:329–348

    Article  CAS  Google Scholar 

  • Lovelock CE, Adame MF, Bennion V, Hayes M, O’Mara J, Reef R, Santini NS (2014) Contemporary Rates of Carbon Sequestration Through Vertical Accretion of Sediments in Mangrove Forests and Saltmarshes of South East Queensland, Australia. Estuar Coasts 37(3):763–771

    Article  CAS  Google Scholar 

  • Macreadie PI, Hughes AR, Kimbro DL (2013) Loss of ‘blue carbon’ from coastal salt marshes following habitat disturbance. PLoS One 8:1–8

    Article  Google Scholar 

  • Macreadie PI, Ollivier QR, Kelleway JJ, Serrano O, Carnell PE, Ewers Lewis CJ, Atwood TB, Sanderman J, Baldock J, Connolly RM, Duarte CM, Lavery PS, Steven A, Lovelock CE (2017) Carbon sequestration by Australian tidal marshes. Scientific Reports 7:44071

    Article  Google Scholar 

  • Mani K, Salgaonkar BB, Das D, Bragança JM (2012) Community solar salt production in Goa, India. Aquat Biosyst 8(1):30

    Article  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9(10):552–560

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley Publishers, Hoboken

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83(10):2869–2877

    Article  Google Scholar 

  • National Wetland Atlas (2011) SAC/EPSA/ABHG/NWIA/ATLAS/34/2011, Space Applications Centre (ISRO), Ahmedabad, India, 310p

  • Nellemann C, Corcoran E, Duarte CM, Valdes L, DeYoung C, Fonseca L, Grimsditch G (2009) Blue Carbon A Rapid Response Assessment. United Nations Environmental Programme, GRID-Arendal, Birkeland Trykkeri AS, Birkeland

    Google Scholar 

  • Olsen YS, Dausse A, Garbutt A, Ford H, Thomas DN, Jones DL (2011) Cattle grazing drives nitrogen and carbon cycling in a temperate salt marsh. Soil Biology and Biochemistry 43:531–541

    Article  CAS  Google Scholar 

  • Ouyang X, Lee SY, Connolly RM (2017) The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth Science Reviews 166:53–65

    Article  CAS  Google Scholar 

  • Pattanaik C, Reddy CS, Dhal NK, Das R (2008) Utilization of mangrove forests in Bhitarkanika wildlife sanctuary Orissa. Indian Journal of Traditional Knowledge 7(4):598–603

    Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7(9):e43542

    Article  CAS  Google Scholar 

  • Phang VXH, Chou LM, Friess DA (2015) Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, sea grass meadow, mudflat and sandbar. Earth Surface Processes and Landforms 40:1387–1400. https://doi.org/10.1002/esp.3745

    Article  CAS  Google Scholar 

  • Rathore AP, Chaudhary DR, Jha B (2016) Biomass production, nutrient cycling, and carbon fixation by Salicornia brachiate Roxb.: a promising halophyte for coastal saline soil rehabilitation. International Journal of Phytoremediation 18(8):801–811

    Article  CAS  Google Scholar 

  • Ray R, Chowdhury C, Majumder N, Dutta MK, Mukhopadhyay SK, Jana TK (2013) Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest. Tellus Series B: Chemical and Physical Meteorology 65(1):18981

    Article  Google Scholar 

  • Rey JR, Shaffer J, Crossman R, Tremain D (1990) Aboveground primary production in impounded, ditched, and natural Batis-Salicornia marshes along the Indian River lagoon, Florida, USA. Wetlands 10:151–171

    Article  Google Scholar 

  • Saintilan N, Rogers K, Mazumder D, Woodroffe C (2013) Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science 128:84–92

    Article  CAS  Google Scholar 

  • Shynu R, Rao VP, Sarma VVSS, Kessarkar PM, ManiMurali R (2015) Sources and fate of organic matter in suspended and bottom sediments of the Mandovi and Zuari estuaries, western India. Current Science 108(2):226–238

    CAS  Google Scholar 

  • Smith JL, Doran JW (1996) Measurement and use of pH and electrical conductivity for soil quality analysis. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, pp 169–185

    Google Scholar 

  • Sivakumar S, Krishnakumar P, Lakshumanan C (2014) Estimation of carbon stocks in above ground biomass in Muthupet mangrove, Southeast coast of India. International Journal of Intellectual Advancements and Research in Engineering Computations 5(2):139–150

    Google Scholar 

  • Sousa AI, Santos DB, Da Silva EF, Sousa LP, Cleary DF, Soares AM, Lillebo AI (2017) Blue Carbon’and nutrient stocks of salt marshes at a temperate coastal lagoon (ria de Aveiro, Portugal). Scientific Reports 7:1–11

    Article  Google Scholar 

  • Tesi T, Miserocchi S, Goñi MA, Langone L, Boldrin A, Turchetto M (2007) Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy). Estuarine, Coastal and Shelf Science 73:431–446

    Article  Google Scholar 

  • Thompson RL, Patra PK, Chevallier F, Maksyutov S, Law RM, Ziehn T, van der Laan-Luijkx IT, Peters W, Ganshin A, Zhuravlev R, Maki T, Nakamura T, Shirai T, Ishizawa M, Saeki T, Machida T, Poulter B, Canadell JG, Ciais P (2016) Top–down assessment of the Asian carbon budget since the mid 1990s. Nature Communications 7:10724. https://doi.org/10.1038/ncomms10724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne KM, Takekawa JY, Elliott-Fisk DL (2012) Ecological effects of climate change on salt marsh wildlife: a case study from a highly urbanized estuary. Journal of Coastal Research 28(6):1477–1487

    Article  Google Scholar 

  • Ungar IA (1987) Population characteristics, growth, and survival of the halophyte Salicornia europaea. Ecology 68:569–575

    Article  Google Scholar 

  • Van de Broek M, Temmerman S, Merckx R, Govers G (2016) Controls on soil organic carbon stocks in tidal marshes along an estuarine salinity gradient. Biogeosciences 13(24):6611–6624

    Article  Google Scholar 

  • Watanabe K, Kuwae T (2015) How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system? Global Change Biology 21:2612–2623

    Article  Google Scholar 

  • Wu Y, Liu R, Zhao Y, Li P, Liu C (2009) Spatial and seasonal variation of salt ions under the influence of halophytes, in a coastal flat in eastern China. Environ Geol 57(7):1501

    Article  CAS  Google Scholar 

  • Wylie L, Sutton-Grier A, Moore A (2016) Keys to successful blue carbon projects: lessons learned from global case studies. Marine Policy 65:76–84

    Article  Google Scholar 

  • Zhou JL, Wu Y, Kang QS, Zhang J (2007) Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze estuary in China. Estuar Coastl Shelf Sci 71:47–59

    Article  Google Scholar 

Download references

Acknowledgements

The author T.K. is grateful to the University Grants Commission for providing UGC Dr. D. S. Kothari Postdoctoral Fellowship (F.4-2/2006 (BSR)/BL/1415/0226 dated 05.03.2015) and Bharathidasan University authorities for providing required facilities to carry out this work. A grant from MOST to Tan Han Shih (=HUD) is gratefully acknowledged (MOST 107-2621-M-037-001 to T.H. Shih). We also thank the Asia-Pacific Ocean Research Center of the Department of Oceanography [No. 76211194] in the frame of KMU/NSYSU cooperation for research support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Uwe Dahms or Rathinam Arthur James.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaviarasan, T., Dahms, H.U., Gokul, M.S. et al. Seasonal Species Variation of Sediment Organic Carbon Stocks in Salt Marshes of Tuticorin Area, Southern India. Wetlands 39, 483–494 (2019). https://doi.org/10.1007/s13157-018-1094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-018-1094-6

Keywords

Navigation