Skip to main content

Advertisement

Log in

Global Wetland Datasets: a Review

  • Review Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Accurate wetland datasets are indispensable for generating polices on wetland conservation and appropriate land uses, global climate change studies, and biodiversity conservation. Although increasing numbers of global wetland-related datasets have been established, the extensive disagreements among these datasets are prominent. In particular, estimates of global wetland area range from 0.54 to 21.26 million km2 and the class-specific spatial consistency of wetlands is less than 1%. The different definitions of ‘wetland’ and the intrinsic features of wetlands contribute to this extensive inconsistency. Given the various requirements of wetland-oriented data products, it is important to conduct comprehensive wetland mapping at global scale. The Ramsar wetland definition is recommended and a hierarchical and flexible structure of wetland classification system is preferred for future global wetland datasets. Time-series satellite imagery at 250–1000 m spatial resolution is preferred to characterize wetland dynamics by combination of passive/active SAR data and other ancillary data, such as topography, climate, and soil data. The classification tree method for classification of massive satellite imagery and big-data technology for sample datasets are promising for the enhancement of wetland map product accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8:307–358

    Article  CAS  Google Scholar 

  • Augusteijn MF, Warrender CE (1998) Wetland classification using optical and radar data and neural network classification. International Journal of Remote Sensing 19:1545–1560

    Article  Google Scholar 

  • Avis C, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geoscience 4:444–448

    Article  CAS  Google Scholar 

  • Baker C, Lawrence R, Montagne C et al (2006) Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands 26:465–474

    Article  Google Scholar 

  • Barbier EB, Acreman MC, Knowler D. Economicvaluation of wetlands: a guide for policy makers and planners. Ramsar Convention Bureau, Gland, 1997

  • Bartholomé E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from earth observation data. International Journal of Remote Sensing 26:1959–1977

    Article  Google Scholar 

  • Bicheron P, Leroy M, Brockmann C et al (2006) Globcover: a 300 m global land cover product for 2005 using ENVISAT MERIS time series. Proceedings of the Recent Advances in Quantitative Remote Sensing Symposium, Valencia, pp 538–542

  • Blanco PD, Colditz RR, Saldaña GL et al (2013) A land cover map of Latin America and the Caribbean in the framework of the SERENA project. Remote Sensing of Environment 132:13–31

    Article  Google Scholar 

  • Boer G, Flato G, Ramsden D (2000) A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century. Climate Dynamics 16:427–450

    Article  Google Scholar 

  • Browne DM, Dell R (eds) (2007) Conserving waterfowl and wetlands amid climate change. Ducks Unlimited, Inc., Memphis

    Google Scholar 

  • Chen J, Chen J, Liao A et al (2015) Global land cover mapping at 30m resolution: a POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing 103:7–27

    Article  Google Scholar 

  • Costanza R, D'Arge R, Groot RD et al (1997) The value of the world's ecosystem services and natural capital. Ecological Economics 387:253–260

    CAS  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, et al. 1989. Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, fish and Wildlife Service, Washington, D.C. Jamestown: northern prairie Wildlife research Center home page. http://www.Npwrc.Usgs.Gov/resource/1998/classwet/classwet.Htm (Version 04DEC98)

  • Dahl TE (1990) Wetlands losses in the United States, 1780's to 1980's. Report to the Congress, National Wetlands Inventory, St. Petersburg

    Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Researh 65:936–941

    Google Scholar 

  • Dixon MJR, Loh J, Davidson NC et al (2016) Tracking global change in ecosystem area: the wetland extent trends index. Biological Conservation 193:27–35

    Article  Google Scholar 

  • Donchyts G, Baart F, Winsemius H et al (2016) Earth's surface water change over the past 30 years. Nature Climate Change 6:810–813

    Article  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17:71–84

    Article  Google Scholar 

  • Fan Y, Miguez-Macho G (2010) A simple hydrologic framework for simulating wetlands in climate and earth system models. Climate Dynamics 37:253–278

    Article  Google Scholar 

  • Fan Y, Li H, Miguezmacho G (2013) Global patterns of groundwater table depth. Science 339:940–943

    Article  CAS  PubMed  Google Scholar 

  • Finlayson CM, van der Valk AG (1995) Wetlands classification and inventory: a summary. Vegetatio 118:185–192

    Article  Google Scholar 

  • Finlayson CM, Davidson NC, Spiers AG et al (1999) Global wetland inventory – current status and future priorities. Marine and Freshwater Research 50:717–727

    Article  Google Scholar 

  • Finlayson M, Cruz RD, Davidson N et al (2005) Millennium ecosystem assessment: ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC 656:87–98

    Google Scholar 

  • Fluet-Chouinard E, Lehner B, Rebelo L-M et al (2015) Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sensing of Environment 158:348–361

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JC et al (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of Environment 83:287–302

    Article  Google Scholar 

  • Giri C, Zhu Z, Reed B (2005) A comparative analysis of the global land cover 2000 and MODIS land cover data sets. Remote Sensing of Environment 94:123–132

    Article  Google Scholar 

  • Gong P, Wang J, Yu L et al (2012) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing 34:2607–2654

    Article  Google Scholar 

  • Gong P, Yu L, Li C et al (2016) A new research paradigm for global land cover mapping. Annual GIS:1–16

  • Gumbricht T. Mapping global tropical wetlands from earth observing satellite imagery. Center for International Forestry Research (CIFOR), Bogor, 2012

  • Hansen M, Dubayah R, Defries R (2007) Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing 17:1075–1081

    Article  Google Scholar 

  • Herold M, Mayaux P, Woodcock CE et al (2008) Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing of Environment 112:2538–2556

    Article  Google Scholar 

  • Hopcroft PO, Valdes PJ, Beerling DJ (2011) Simulating idealized Dansgaard-Oeschger events and their potential impacts on the global methane cycle. Quaternary Science Revies 30:3258–3268

    Article  Google Scholar 

  • Hu SJ, Niu ZG, Chen YF et al (2017) Global wetlands: potential distribution, wetland loss, and status. Science of the Total Environment. doi:10.1016/j.scitotenv.2017.02.001

  • Hulme M, Doherty R, Ngara T et al (2005) Global warming and African climate change: a reassessment. Climate Change:29–40

  • Jung M, Henkel K, Herold M et al (2006) Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment 101:534–553

    Article  Google Scholar 

  • Kent, Donald M. Defining wetlands. In: Kent, Donald M, et al. Applied wetlands science and technology. Lewis Publishers, Boca Raton, 1996

  • Kleinen T, Brovkin V (2013) Modelling global peatlands from LGM to Anthropocene[C]// AGU fall meeting abstracts

  • Klemas V (2005) Remote sensing Techniques for studying coastal ecosystems: an overview. Journal of Coastal Research 27(1):2–17

    Google Scholar 

  • Klemov, Kenneth M (1998) Wetland mapping. In: Majumdar SK, Miller EW et al (eds) Ecology of wetlands and associated systems. The Pennsylvania Academy Science

  • Köchy M, Freibauer A (2009) Global distribution of wetlands. Coordination action carbon observation system. http://literatur.Thuenen.De/digbib_extern/dk043226.Pdf, 14 Sept 2016, data last accessed

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296:1–22

    Article  Google Scholar 

  • Li C, Wang J, Wang L et al (2013) Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sensing 6:964–983

    Article  Google Scholar 

  • Loveland T, Reed B, Brown J et al (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21:1303–1330

    Article  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles 1:61–86

    Article  CAS  Google Scholar 

  • Melton JR, Wania R, Hodson EL et al (2012) Present state of global wetland extent and wetland methane modelling: methodology of a model intercomparison project (WETCHIMP). Geoscientific Model Development Discussion 5:4071–4136

    Article  Google Scholar 

  • Min F, Joseph OS, Saurabh C et al (2016) A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm. International Journal of Digital Earth 9:113–133

    Article  Google Scholar 

  • Mitra S, Wassmann R, Paul LG. Global Inventory of Wetlands and their Role in the Carbon Cycle. ZEF – Discussion Papers On Development Policy No. 64. Center for Development Research, Bonn, 2003, pp. 44

  • Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Current Science 88:25–35

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, Second edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Moody A, Strahler A (1993) MODIS land cover product algorithm technical basis document. NASA Mission to Planet Earth Program, NASA, Greenbelt

    Google Scholar 

  • Nakaegawa T (2012) Comparison of water-related land cover types in six 1-km global land cover datasets. Journal of Hydrometeorology 13(2):649–664

    Article  Google Scholar 

  • Navid D (2014) International law of migratory species: the Ramsar Convention. Doklady Earth Sciences 455:296–298

    Article  Google Scholar 

  • Nayak SR, Sahai B (1985) Coastal morphology -a case-study of the Gulf of Khambhat (Cambay). International Journal of Remote Sensing 6:559–567

    Article  Google Scholar 

  • Niu ZG (2015) Mapping China’s wetlands and recent changes with remotely sensed data. In: Tiner RW, Lang MW, Klemas VV (eds) Remote sensing of wetlands: applications and advances. CRC Press, Boca Raton, pp 473–490

    Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetlands Ecology and Management 10:381–402

    Article  Google Scholar 

  • Parish F, Looi C (1999) Wetlands, biodiversity and climate change. Options and needs for enhanced linkage between the Ramsar Convention on wetlands, Convention on Biological Diversity and UN Framework Convention on Climate Change. Global Environment Network

  • Paul AK (2000) Wetland Ecology: principles and conservation, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pekel JF, Cottam A, Gorelick N et al (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540:418–422

    Article  CAS  PubMed  Google Scholar 

  • Phinn S, Hess L, Finlayson CM (1999) An assessment of the usefulness of remote sensing for wetland inventory and monitoring in Australia. In: Finlayson CM, Speirs AG (eds) Techniques for enhanced wetland inventory and modelling, supervising scientist report. Supervising Scientist, Canberra, pp 44–81

    Google Scholar 

  • Prigent C, Papa F, Aires F et al (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. Journal of Geophysical Research-Atmospheres 112:1103–1118

    Article  Google Scholar 

  • Ramsar Information Bureau (1998) Report of allocations 1992–97, the Ramsar Convention small grants fund. Ramsar, Gland, http://www.iucn.org/themes/Ramsar

  • Riley WJ, Subin ZM, Lawrence DM et al (2011) Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8:1925–1953

    Article  CAS  Google Scholar 

  • Russi D, Brink PT, Badura T et al (2013) The economics of ecosystems and biodiversity for water and wetlands. IEEP, London

    Google Scholar 

  • Sadeghi R, Zarkami R, Sabetraftar K et al (2012) Use of support vector machines (SVMs) to predict distribution of an invasive water fern Azolla filiculoides (lam.) in Anzali wetland, southern Caspian Sea, Iran. Ecological Modelling 244:117–126

    Article  Google Scholar 

  • Sahagian D, Melack J (1997) Global wetland distribution and functional characterization: trace gases and the hydrologic cycle. Environmental Policy Collection

  • Schowengerdt RA (2012) Techniques for image processing and classifications in remote sensing. Academic, New York

    Google Scholar 

  • Scott DA (2010) A directory of wetlands. The Middle East Iucn, Gland, Switzerland and International Waterfowl Research Bureau, Slimbridge, United Kingdom

  • Sharma R, Tateishi R, Hara K et al (2015) Developing superfine water index (SWI) for global water cover mapping using MODIS data. Remote Sensing 7:13807–13841

    Article  Google Scholar 

  • Sophie B, Pierre D (2010) GlobCover 2009 products description and validation report. European Space Agency, Paris

    Google Scholar 

  • Spalding MD, Blasco F, Field CD (1997) World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa

    Google Scholar 

  • Stankiewicz K, DabrowskaZielinska K, Gruszczynska M et al (2003) Mapping vegetation of a wetland ecosystem by fuzzy classification of optical and microwave satellite images supported by various ancillary data. Proceedings of SPIE - The International Society for Optical Engineering 4879:352–361

    Google Scholar 

  • Takai Y (1970) The mechanism of methane formation in flooded paddy soil. Soil Science & Plant Nutrition 16:238–244

    Article  CAS  Google Scholar 

  • Tateishi R, Uriyangqai B, Al-Bilbisi H et al (2011) Production of global land cover data – GLCNMO. International Journal of Digital Earth 4:22–49

    Article  Google Scholar 

  • Tateishi R, Hoan NT, Kobayashi T et al (2014) Production of global land cover data - GLCNMO2008. Journal of Geography and Geology 6:99

    Article  Google Scholar 

  • Tuanmu MN, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography 23:1031–1045

    Article  Google Scholar 

  • Van Engelen V, Huting J (2002) Peatlands of the world. An interpretation of the world soil map. ISRIC, Wageningen, unpublished. GPI project 29 GPI 1

  • Wright C, Gallant A (2007) Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sensing of Environment 107:582–605

    Article  Google Scholar 

  • Xu X, Tian H (2012) Methane exchange between marshland and the atmosphere over China during 1949–2008. Global Biogeochemical Cycles 26:1–14

    Article  Google Scholar 

  • Yin SB, Bing LI, Fang S (2014) Review on studies of wetland definition. Wetland Science 12(4):504–514

    Google Scholar 

  • Yu L, Liang L, Wang J et al (2014) Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Jouranl of Remote Sensing 35:4573–4588

    Article  Google Scholar 

  • Zhao Y, Gong P, Yu L et al (2014) Towards a common validation sample set for global land-cover mapping. International Jouranl of Remote Sensing. 35:4795–4814

    Article  Google Scholar 

  • Zhu P, Gong P (2014) Suitability mapping of global wetland areas and validation with remotely sensed data. Science China Earth Sciences 57(10):2283–2292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Fund of China (41271423). We also greatly appreciated the professional comments and advice of the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Niu, Z. & Chen, Y. Global Wetland Datasets: a Review. Wetlands 37, 807–817 (2017). https://doi.org/10.1007/s13157-017-0927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-017-0927-z

Keywords

Navigation