Skip to main content
Log in

Flowering in the Rich Fen Species Eriophorum latifolium Depends on Climate and Reproduction in the Previous Year

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

In this long-term study, we identify the climate variables most important to flowering density in Eriophorum latifolium in boreal rich fen vegetation, and assess their relative importance. We analysed time-series data (1982–2008) of flowering density in 126 permanent plots in an oceanic and a continental area in Norway, and developed an autoregressive model where the density of flowering plants was determined by the cost of previous flowering, climate during the same year as flowering, and climate during the year prior to flowering. The cost of reproduction was the most influential of the factors affecting flowering. Our results suggest that dry conditions during the previous summer affected flowering negatively in the oceanic population, but had no effect in the continental population. We attribute this to differences in hydrology, with steeply sloping fens in the oceanic area, and gently sloping, spring-fed fens in the continental area. Furthermore, flowering increased with the length of the previous growing season (oceanic population), decreased with the amount of precipitation during the previous spring (continental population), and increased with temperature in spring the same year (both populations). We conclude that climate conditions during the previous year are more important than climate conditions during the year of flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R, Cornelissen JHC, Dorrepaal E, van Logtestijn RSP, Callaghan TV (2004) Effects of experimentally imposed climate scenarios on flowering phenology and flower production of subarctic bog species. Global Change Biology 10:1599–1609. doi:10.1111/j.1365-2486.2004.00815.x

    Article  Google Scholar 

  • Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182:65–77. doi:10.1007/s11258-005-9031-1

    Google Scholar 

  • Aldridge G, Inouye DW, Forrest JRK, Barr WA, Miller-Rushing AJ (2011) Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. Journal of Ecology 99:905–913. doi:10.1111/j.1365-2745.2011.01826

    Article  Google Scholar 

  • Ashman TL (1994) A dynamic perspective on the physiological cost of reproduction in plants. American Naturalist 144:300–316

    Article  Google Scholar 

  • Aydelotte AR, Diggle PK (1997) Analysis of developmental preformation in the alpine herb Caltha leptosepala (Ranunculaceae). American Journal of Botany 84:1646–1657. doi:10.2307/2446462

    Article  CAS  PubMed  Google Scholar 

  • Bedford BL, Godwin KS (2003) Fens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23:608–629. doi:10.1672/0277-5212(2003)023[0608:FOTUSD]2.0.CO;2

    Article  Google Scholar 

  • Bertin R (2008) Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society 135:126–146. doi:10.3159/07-RP-035R.1

    Article  Google Scholar 

  • Blinova IV (2008) Populations of orchids at the northern limit of their distribution (Murmansk Oblast): effect of climate. Russian Journal of Ecology 39:26–33. doi:10.1134/s1067413608010050

    Article  Google Scholar 

  • Bloor JMG, Pichon P, Falcimagne R, Leadley P, Soussana JF (2010) Effects of warming, summer drought, and CO2 enrichment on aboveground biomass production, flowering phenology, and community structure in an upland grassland ecosystem. Ecosystems 13:888–900. doi:10.1007/s10021-010-9363-0

    Article  CAS  Google Scholar 

  • Bronson DR, Gower ST, Tanner M, Van Herk I (2009) Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Global Change Biology 15:1534–1543. doi:10.1111/j.1365-2486.2009.01845.x

    Article  Google Scholar 

  • Bullard ER, Shearer HDH, Day JD, Crawford RMM (1987) Survival and flowering of Primula scotica hook. Journal of Ecology 75:589–602. doi:10.2307/2260191

    Article  Google Scholar 

  • Calvo RN, Horvitz CC (1990) Pollinator limitation, cost of reproduction, and fitness in plants: a transition-matrix demographic approach. American Naturalist 136:499–516

    Article  Google Scholar 

  • Chapin FS, Shaver GR (1996) Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840

    Article  Google Scholar 

  • Crawford RMM (2000) Ecological hazards of oceanic environments. New Phytologist 147:257–281. doi:10.1046/j.1469-8137.2000.00705.x

    Article  Google Scholar 

  • Crawley MJ (1997) Life history and environment. In: Crawley MJ (ed) Plant ecology, 2nd edn. Blackwell Science Ltd., Oxford, pp 73–131

    Google Scholar 

  • Crawley MJ (2007) The R Book. John Wiley & Sons Ltd, Chichester

    Book  Google Scholar 

  • de Vere N (2007) Biological Flora of the British Isles: Cirsium dissectum (L.) Hill (Cirsium tuberosum (L.) All. subsp anglicum (Lam.) Bonnier; Cnicus pratensis (Huds.) Willd., non Lam.; Cirsium anglicum (Lam.) DC.). Journal of Ecology 95:876–894. doi:10.1111/j.1365-2745.2007.01265.x

    Article  Google Scholar 

  • Ehrlén J, Eriksson O (1995) Pollen limitation and population growth in a herbaceous perennial legume. Ecology 76:652–656

    Article  Google Scholar 

  • Ejankowski W (2008) Effect of waterlogging on regeneration in the dwarf birch (Betula nana). Biologia 63:670–676. doi:10.2478/s11756-008-0126-8

    Article  Google Scholar 

  • Essl F, Dullinger S, Moser D, Rabitsch W, Kleinbauer I (2012) Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation. Biodiversity and Conservation 21:655–669

    Article  Google Scholar 

  • Fernández-Pascual E, Jiménez-Alfaro B, Hájek M, Díaz TE, Pritchard HW (2015) Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Folia Geobotanica 50:293–301

    Article  Google Scholar 

  • Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Fox LR, Ribeiro SP, Brown VK, Masters GJ, Clarke IP (1999) Direct and indirect effects of climate change on St John’s wort, Hypericum perforatum L. (Hypericaceae). Oecologia 120:113–122. doi:10.1007/s004420050839

    Article  Google Scholar 

  • Gong J, Wang K, Kellomäki S, Zhang C, Martikainen PJ, Shurpali N (2012) Modeling water table changes in boreal peatlands of Finland under changing climate conditions. Ecological Modelling 244:65–78. doi:10.1016/j.ecolmodel.2012.06.031

    Article  Google Scholar 

  • Grace J (1997) Plant water relations. In: Crawley MJ (ed) Plant ecology, 2nd edn. Blackwell Science Ltd., Oxford, pp 28–50

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8:97–114. doi:10.1016/j.ppees.2006.08.002

    Article  Google Scholar 

  • Havas P (1961) Vegetation und Ökologie der ostfinnischen Hangmoore. Annales Botanici Societatis Vanamo 31:1–188

    Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytologist 128:347–362. doi:10.1111/j.1469-8137.1994.tb04019.x

    Article  CAS  Google Scholar 

  • Heide OM (2002) Climatic flowering requirements of bipolar sedges Carex spp. and the feasibility of their trans-equatorial migration by mountain-hopping. Oikos 99:352–362. doi:10.1034/j.1600-0706.2002.990217.x

    Article  Google Scholar 

  • Holway JG, Ward RT (1965) Phenology of alpine plants in Northern Colorado. Ecology 46:73–83. doi:10.2307/1935259

    Article  Google Scholar 

  • Hudson JMG, Henry GHR (2009) Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology 90:2657–2663. doi:10.1890/09-0102.1

    Article  CAS  PubMed  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15:56–61. doi:10.1016/S0169-5347(99)01764-4

    Article  CAS  Google Scholar 

  • Inghe O, Tamm CO (1985) Survival and flowering of perennial herbs. IV. The behavior of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–1981. Oikos 45:400–420. doi:10.2307/3565576

    Article  Google Scholar 

  • Inghe O, Tamm CO (1988) Survival and flowering of perennial herbs. V. Patterns of flowering. Oikos 51:203–219. doi:10.2307/3565644

    Article  Google Scholar 

  • Inouye DW, Morales MA, Dodge GJ (2002) Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change. Oecologia 130:543–550. doi:10.1007/s00442-001-0835-y

    Article  Google Scholar 

  • Janečková P, Wotavová K, Schödelbauerová I, Jersáková J, Kindlmann P (2006) Relative effects of management and environmental conditions and performance and survival of populations of a terrestrial orchid, Dactylorhiza majalis. Biological Conservation 129:40–49

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Wöllecke J, Beierkuhnlein C (2011) Climate extremes initiate ecosystem-regulating functions while maintaining productivity. Journal of Ecology 99:689–702. doi:10.1111/j.1365-2745.2011.01817.x

    Article  Google Scholar 

  • Jiménez-Alfaro B, Hájek M, Ejrnaes R, Rodwell J, Pawlikowski P, Weeda EJ, Laitinen J, Moen A, Bergamini A, Aunina L, Sekulová L, Tahvanainen T, Gillet F, Jandt U, Dítě D, Hájková P, Corriol G, Kondelin H, Díaz TE (2014) Biogeographic patterns of base-rich fen vegetation across Europe. Applied Vegetation Science 17:367–380. doi:10.1111/avsc.12065

    Article  Google Scholar 

  • Jongejans E, de Kroon H, Berendse F (2006) The interplay between shifts in biomass allocation and costs of reproduction in four grassland perennials under simulated successional change. Oecologia 147:369–378. doi:10.1007/s00442-005-0325-8

    Article  PubMed  Google Scholar 

  • Jónsdóttir IS, Watson MA (1997) Extensive physiological integration: an adaptive trait in resource-poor environments? In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 109–136

    Google Scholar 

  • Joosten H, Moen A, Tanneberger F (eds) (2016) Mires and peatlands of Europe: status, distribution and nature conservation. Schweizerbart Science Publisher, Stuttgart

    Google Scholar 

  • Laaksonen K (1979) Effective temperature sums and durations of the vegetative period in Fennoscandia (1920–1950). Fennia 157:171–197

    Google Scholar 

  • Lund M, Lafleur PM, Roulet NT, Lindroth A, Christensen TR, Aurela M, Chojnicki BH, Flanagan LB, Humphreys ER, Laurila T, Oechel WC, Olejnik J, Rinne J, Schubert P, Nilsson MB (2010) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biology 16:2436–2448

    Google Scholar 

  • Matthes H, Rinke A, Dethloff K (2009) Variability of observed temperature-derived climate indices in the Arctic. Global and Planetary Change 69:214–224. doi:10.1016/j.gloplacha.2009.10.004

    Article  Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley series in probability and statistics. Wiley, New York

    Google Scholar 

  • Meineri E, Skarpaas O, Spindelböck J, Bargmann T, Vandvik V (2014) Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species. Journal of Vegetation Science 25:275–286

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Global Change Biology 12:1969–1976

    Article  Google Scholar 

  • Metsävainio K (1931) Untersuchungen über das Wurzelsystem der Moorpflanzen. Annales Botanici Societatis Vanamo 1:1–418

    Google Scholar 

  • Moen A (1990) The plant cover of the boreal uplands of Central Norway. I. Vegetation ecology of Sølendet nature reserve; haymaking fens and birch woodlands. Gunneria 63:1–451

    Google Scholar 

  • Moen A (1999) National Atlas of Norway: vegetation. National Atlas of Norway. Norwegian Mapping Authority, Hønefoss

    Google Scholar 

  • Moen A (2000) Botanical mapping and management plan for Tågdalen Nature Reserve in Surnadal, Central Norway. NTNU Vitenskapsmuseet Rapport Botanisk Serie 2000–7:1–45

    Google Scholar 

  • Moen A, Øien D-I (2003) Ecology and survival of Nigritella nigra, a threatened orchid species in Scandinavia. Nordic Journal of Botany 22:435–461

    Article  Google Scholar 

  • Moen A, Lyngstad A, Øien D-I (2012) Boreal rich fen vegetation formerly used for haymaking. Nordic Journal of Botany 30:226–240. doi:10.1111/j.1756-1051.2011.01253.x

    Article  Google Scholar 

  • Moen A, Lyngstad A, Øien D-I (2015) Hay crop of boreal rich fen communities traditionally used for haymaking. Folia Geobotanica 50:25–38. doi:10.1007/s12224-015-9204-1

    Article  Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytologist 155:321–348

    Article  Google Scholar 

  • Øien D-I, Moen A (2002) Flowering and survival of Dactylorhiza lapponica and Gymnadenia conopsea in the Sølendet Nature Reserve, Central Norway. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations and underlying mechanisms in terrestrial orchid populations. Backhuys Publishers, Leiden, pp 3–22

    Google Scholar 

  • Øien D-I, Pedersen B (2005) Seasonal pattern of dry matter allocation in Dactylorhiza lapponica (Orchidaceae) and the relation between tuber size and flowering. Nordic Journal of Botany 23:441–451. doi:10.1111/j.1756-1051.2003.tb00418.x

    Article  Google Scholar 

  • Parviainen M, Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia. Geografiska Annaler: Series A, Physical Geography 89A:137–151

    Article  Google Scholar 

  • Peñuelas J, Gordon C, Llorens L, Nielsen T, Tietema A, Beier C, Bruna P, Emmett B, Estiarte M, Gorissen A (2004) Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems 7:598–612. doi:10.1007/s10021-004-0179-7

    Article  Google Scholar 

  • Persson Å (1961) Mire and spring vegetation in an area north of Lake Torneträsk, Torne Lappmark, Sweden. I. Description of the vegetation. Opera Botanica 6:1–187

    Google Scholar 

  • Persson Å (1962) Mire and spring vegetation in an area north of Lake Torneträsk, Torne Lappmark, Sweden. II. Habitat conditions. Opera Botanica 6:1–100

    Google Scholar 

  • Primack R, Stacy E (1998) Cost of reproduction in the pink lady’s slipper orchid, (Cypripedium acaule, Orchidaceae): an eleven-year experimental study of three populations. American Journal of Botany 85:1672–1679

    Article  CAS  PubMed  Google Scholar 

  • Raunkiær C (1895) De danske blomsterplanters naturhistorie. I. Enkimbladede. Gyldendalske Boghandels Forlag, København

    Google Scholar 

  • Rydin H, Jeglum JK (2013) The biology of peatlands, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Saavedra F, Inouye DW, Price MV, Harte J (2003) Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment. Global Change Biology 9:885–894. doi:10.1046/j.1365-2486.2003.00635.x

    Article  Google Scholar 

  • Sandvik SM, Heegaard E, Elven R, Vandvik V (2004) Responses of alpine snowbed vegetation to long-term experimental warming. Ecoscience 11:150–159

    Article  Google Scholar 

  • Sjörs H (1948) Myrvegetation i Bergslagen. Acta Phytogeogrica Suecica 21:1–299

    Google Scholar 

  • Sjörs H (1952) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2(1950):241–258

    Google Scholar 

  • Sletvold N, Øien D-I, Moen A (2010) Long-term influence of mowing on population dynamics in the rare orchid Dactylorhiza lapponica: the importance of recruitment and seed production. Biological Conservation 143:747–755

  • Sletvold N, Dahlgren JP, Øien D-I, Moen A, Ehrlen J (2013) Climatic conditions influence the effect of land use on the population viability of a rare orchid: a 30-year experimental study. Global Change Biology 19:2729–2738

  • Syrjänen K, Lehtilä K (1993) The cost of reproduction in Primula veris: differences between two adjacent populations. Oikos 67:465–472. doi:10.2307/3545358

    Article  Google Scholar 

  • ter Braak CJF, Looman CWN (1995) Regression. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 29–77

    Chapter  Google Scholar 

  • The BACC Author Team (2008) Past and Current Climate Change. In: Assessment of climate change for the Baltic Sea Basin. Regional climate studies. Springer, Berlin, pp 35–131

    Chapter  Google Scholar 

  • Tveito OE, Bjørdal I, Skjelvåg A, Aune B (2005) A GIS-based agro-ecological decision system based on gridded climatology. Meteorological Applications 12:57–68. doi:10.1017/S1350482705001490

    Article  Google Scholar 

  • Woodward FI (1990) The impact of low-temperatures in controlling the geographical distribution of plants. Philosophical Transactions of the Royal Society of London B: Biological Sciences 326:585–593. doi:10.1098/rstb.1990.0033

    Article  Google Scholar 

  • Zhaojun B, Joosten H, Hongkai L, Gaolin Z, Xingxing Z, Jinze M, Jing Z (2011) The response of peatlands to climate warming: a review. Acta Ecologica Sinica 31:157–162. doi:10.1016/j.chnaes.2011.03.006

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

Many have contributed to the collection of the data used in this paper, and we mention Dag-Inge Øien especially. We would also like to thank Håkan Rydin, Kristian Hassel and three anonymous reviewers for comments and suggestions. This study is part of a PhD project that was funded by the Norwegian University of Science and Technology. The paper is a contribution to the research project “Mires and Climate” in the Polish-Norwegian research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lyngstad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 127 kb)

Online Resource 2

(DOC 114 kb)

Online Resource 3

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyngstad, A., Moen, A. & Pedersen, B. Flowering in the Rich Fen Species Eriophorum latifolium Depends on Climate and Reproduction in the Previous Year. Wetlands 37, 1–13 (2017). https://doi.org/10.1007/s13157-016-0794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0794-z

Keywords

Navigation