Skip to main content

Advertisement

Log in

The Effects of Soil Moisture and Emergent Herbaceous Vegetation on Carbon Emissions from Constructed Wetlands

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Wetlands serve as sinks for carbon and nutrients but they are also a large source of greenhouse gases. Our objective was to quantify emissions of carbon dioxide (CO2) and methane (CH4) from three free water surface-flow constructed wetlands in the presence and absence of emergent herbaceous vegetation (Typha angustifolia L. and Typha latifolia L.) across a gradient of soil moisture. Measurements were collected on eight sampling dates during June and July, 2014. Similar to previous research, CO2 emissions were higher in vegetated plots, increasing from a median ± std. error of 242 ± 29 to 1612 ± 95 mg m−2 h−1. Emissions of CH4 were also significantly higher in vegetated plots, but the relative magnitude of the effect of plants varied among wetlands. Emissions of CH4 were highest from vegetated plots in the wetland with the highest soil moisture (4.4 ± 1.0 mg m−2 h−1). However, the largest effect of plants on methane emissions occurred in the wetland with intermediate soil moisture, with a 15-fold increase in CH4 emissions from 0.15 ± 0.90 to 2.4 ± 1.2 mg m−2 h−1. Design and management that consider the interactive effects of soil moisture and plants on CH4 emissions may help reduce the greenhouse gas footprint of constructed wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R, Ludwig F (1997) Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–1698

    Article  CAS  Google Scholar 

  • Altor AE, Mitsch WJ (2008) Methane and carbon dioxide dynamics in wetland mesocosms: effects of hydrology and soils. Ecol Appl 18:1307–1320

    Article  PubMed  Google Scholar 

  • Barbera AC, Borin M, Cirelli GL, Toscano A, Mauciera C (2015) Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species. Environ Sci Pollut Res 22:2372–2383

  • Bellisario LM, Moore TR (1998) Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Ecoscience 5:534–541

    Google Scholar 

  • Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327:322–325

    Article  CAS  PubMed  Google Scholar 

  • Bonneville M, Strachan I, Humphreys ER, Roulet NT (2008) Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agric For Meteorol 148:69–81

    Article  Google Scholar 

  • Boon PI, Mitchell A, Lee K (1997) Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia 357:73–87

    Article  CAS  Google Scholar 

  • Bhullar GS, Edwards PJ, Venterink HO (2013) Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J Plant Ecol 6:1–7

    Article  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099

    Article  CAS  Google Scholar 

  • Brix H, Sorrell BK, Orr PT (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Am Soc of Limnol and Oceanogr 37:1420–1433

    Article  Google Scholar 

  • Carmichael MJ, Bernhardt BS, Bräuer SL, Smith WK (2014) The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 19:1–24

    Article  Google Scholar 

  • Calhoun A, King GM (1997) Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes. Appl Environ Microbiol 63:3051–3058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chimner RA, Cooper DJ (2003) Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:345–351

    Article  CAS  Google Scholar 

  • de Klein JJ, van der Werf AK (2014) Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol Eng 66:36–42

    Article  Google Scholar 

  • Green SM, Baird AJ (2012) A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane - including that due to episodic ebullition - from peatlands. Plant Soil 351:207–218

    Article  CAS  Google Scholar 

  • Günther A, Jurasinski G, Huth V, Glatzel S (2014) Opaque closed chambers underestimate methane fluxes of Phragmites australis (Cav.) trin. Ex steud. Environ Monit Assess 186:2151–2158

    Article  PubMed  Google Scholar 

  • Helton AM, Bernhardt ES, Fedders A (2014) Biogeochemical regime shifts in coastal landscapes: the contrasting effects of saltwater incursion and agricultural pollution on greenhouse gas emissions from a freshwater wetland. Biogeochemistry 120:133–147. doi:10.1007/s10533-014-9986-x

    Article  CAS  Google Scholar 

  • Henneberg A, Brix H, Sorrell BK (2015) The interactive effect of juncus effuses and water table position on mesocosm methanogenesis and methane emissions. Plant Soil. doi:10.1007/s111104-015-2707-y

    Google Scholar 

  • Hier MB (2007) The role of vegetation in pollutant treatment by a Connecticut stormwater wetland. University of Connecticut, Thesis

    Google Scholar 

  • Hijosa-Valsero M, Sidrach-Cardona R, Bécares E (2012) Comparison of interannual removal variation of various constructed wetland types. Sci Total Environ 430:174–183

    Article  CAS  PubMed  Google Scholar 

  • Hirota M, Tang Y, Hu O, Hirata S, Kato T, Mo W, Cao G, Mariko S (2004) Methane emissions from different vegetation zones in a Qinghai-Tibetan plateau wetland. Soil Biol Biochem 36:737–748

    Article  CAS  Google Scholar 

  • Inamori R, Gui P, Dass P, Matsumura M, Xu K, Kondo T, Ebie Y, Inamori Y (2007) Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochem 42:363–373

    Article  CAS  Google Scholar 

  • Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388

    Article  PubMed  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kankaala P, Mäkelä S, Bergström I, Huitu E, Käki T, Ojala A, Rantakari M, Kortelainen P, Arvola L (2003) Midsummer spatial variation in methane efflux from stands of littoral vegetation in a boreal meso-eutrophic lake. Freshw Biol 48:1617–1629

    Article  Google Scholar 

  • Kao-Kniffin J, Freyre DS, Balser TC (2010) Methane dynamics across wetland plant species. Aquat Bot 93:107–113

    Article  CAS  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124

    Article  Google Scholar 

  • Kelley CA, Martens CS, Ussler W (1995) Methane dynamics across a tidally flooded riverbank margin. Limnol Oceanogr 40:1112–1129

    Article  CAS  Google Scholar 

  • King JY, Reeburgh WS, Regli SK (1998) Methane emission and transport by Arctic sedges in Alaska: results of a vegetation removal experiment. J Geophys Res 103:29083–29092

    Article  CAS  Google Scholar 

  • Laanbroek H (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes: a mini-review. Ann Bot 105:141–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Qiu J, Frolkin S, Xiao X, Salas W, Moore B III, Boles S, Huang Y, Sass R (2002) Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophy Res Lett 29(20):33–1–33–4

    Article  Google Scholar 

  • Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: Applications and sources of error. In: PA M, RC H (eds) Methods in Ecology. Biogenic trace gases: Measuring emissions from soil and water. Blackwell Science, Oxford, pp. 14–51

    Google Scholar 

  • Lund M, LaFleur PM, Roulet NT, Lindroth A, Christensen TR, Aurela M, Chojnicki BH, Flanagan LB, Humphreys ER, Laurila T, Oechel WC, Olejnik J, Rinne J, Schubert P, Nilsson MB (2010) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Chang Biol 16:2436–2448

    Google Scholar 

  • Mander U, Dotro G, Ebie Y, Towprayoon S, Chiemchaisri C, Nogueira SF, Jamsranjav B, Kasak K, Truu J, Tournebize J, Mitsch WJ (2014) Greenhouse gas emissions in constructed wetlands for wastewater treatment: a review. Ecol Eng 66:19–35

    Article  Google Scholar 

  • Maltais-Landry G, Marranger R, Brisson J (2009) Greenhouse gas production and efficiency of planted and artificially aerated construction wetlands. Environ Pollut 157(3):748–754

    Article  CAS  PubMed  Google Scholar 

  • Maucieri C, Borin M, Barbera AC (2014) Role of C3 plant species on carbon dioxide and methane emissions in Mediterranean constructed wetland. Ital J Agron 9:120–126

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, et al. (2013) Wetlands, carbon, and climate change. Landsc Ecol 28(4):583–597

    Article  Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664

    Article  CAS  Google Scholar 

  • Morse JL, Ardón M, Bernhardt ES (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecol Appl 22:264–280

    Article  PubMed  Google Scholar 

  • Myhre G, Shindell DT, Breon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, et al. (eds) Climate change 2013: the physical science basis, report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Newman JM, Clausen JC (1997) Seasonal effectiveness of a constructed wetland for processing milkhouse wastewater. Wetlands 17:375–382

    Article  Google Scholar 

  • Osterberg KL (2006) Constructed wetland to reduce metals, nutrients, and bacteria in roof runoff. University of Connecticut, Thesis

    Google Scholar 

  • Oquist MG, Svensson BH (2002) Vascular plants as regulators of methane emissions from a subarctic mire ecosystem. J Geophys Res - Atmos 107(D21) ACL 10-1–ACL 10-10, doi:10.1029/2001JD001030

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna <http://www.R-project.org>.

  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Damsté JSS, Lamers LPM, Roelofs JGM, Op den Camp HJM, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Reed SC, Brown DS (1992) Constructed wetland design: the first generation. Water Environ Res 64(6):776–781

    Article  CAS  Google Scholar 

  • Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. J Ecol 84:239–246

    Article  CAS  Google Scholar 

  • Stadmark J, Leonardson L (2005) Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecol Eng 25(5):542–551

    Article  Google Scholar 

  • Strom L, Ekberg A, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82

    Article  Google Scholar 

  • Strom L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192

    Article  Google Scholar 

  • Sugimoto A, Fujita N (1997) Characteristics of methane emission from different vegetations on a wetland. Tellus 49:382–392

    Article  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpalil N, E-S T, JM W, JR W, KP W, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate and subtropical wetlands. Glob Chang Biol 20:2183–2197

    Article  PubMed  Google Scholar 

  • Van der Nat F, Middelburg JJ (1998) Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat Bot 61:95–110

    Article  Google Scholar 

  • Waddington JM, Roulet NT, Swanson RV (1996) Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22786

    Article  CAS  Google Scholar 

  • Wang Y, Inamori R, Kong H, Xu K, Inamori Y, Kondo T, Zhang J (2008) Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations. Ecol Eng 32:22–29

    Article  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22(1):73–94

    Article  CAS  Google Scholar 

  • Wild U, Kamp T, Lenz A, Heinz S, Pfadenhauer J (2001) Cultivation of Typha spp. In constructed wetlands for peatland restoration. Ecol Eng 17(1):49–54

  • Yang J, Liu J, Hu X, Li X, Wang Y, Li H (2013) Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of northeast China. Soil Biol Biochem 61:52–60

    Article  CAS  Google Scholar 

  • Yates TT, Si BC, Farrell RE, Pennock DJ (2006) Probability distribution and spatial dependence of nitrous oxide emission: temporal change in hummocky terrain. Soil Sci Soc of Am 70:753–762

    Article  CAS  Google Scholar 

  • Yavitt JB, Knapp AK (1995) Methane emissions to atmosphere through emergent cattail (Typha latifolia L.) plants. Tellus 47:521–534

    Article  Google Scholar 

  • Zak D, Reuter H, Augustin J, Shatwell T, Barth M, Gelbrecht J, McInnes JR (2015) Changes of the CO2 and CH4 production potential of rewetted fens in the perspective of temporal vegetation shifts. Biogeosciences 12:2455–2468

    Article  CAS  Google Scholar 

  • Zhai X, Piwpuan N, Arias CA, Headley T, Brix H (2013) Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems? Ecol Eng 61:555–563

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided to EM by the University of Connecticut Summer Undergraduate Research Fund. We thank Jack Clausen for helpful discussions and field assistance, Jason Vokoun and the Helton Lab Group for reviewing earlier versions of this manuscript, and Eva Nelson and Mary Schoell for assistance in the field. We thank three anonymous reviewers for helpful comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley M. Helton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McInerney, E., Helton, A. The Effects of Soil Moisture and Emergent Herbaceous Vegetation on Carbon Emissions from Constructed Wetlands. Wetlands 36, 275–284 (2016). https://doi.org/10.1007/s13157-016-0736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0736-9

Keywords

Navigation