Skip to main content
Log in

Comparison of Manganese and Iron Oxide-Coated Redox Bars for Characterization of the Redox Status in Wetland Soils

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Characterization of the soil redox status is important for pedogenesis but simple field methods for monitoring are limited. Recently, we introduced manganese (MnIII,IV) oxide-coated redox bars as an indicator for reducing conditions in soils. In this study, we compared these redox bars with well-established iron (FeIII) oxide-coated bars. For a 5-month monitoring period, we quantified the monthly oxide removal along three wetland plots with different variations in water table. Preferential dissolution of the Mn oxide coating exceeded the Fe oxide removal by two to five times that is coherent with the thermodynamic stability of the minerals. Enhanced removal of Mn oxide coatings in the capillary fringe compared to minor depletion of Fe oxides enables to differentiate weakly (300 to 100 mV, range of MnIII,IV reduction) and moderately (100 to −100 mV, range of FeIII reduction) reducing conditions. Processes that occur under weakly reducing soil conditions, e.g. denitrification and trace metal mobilization associated with the reductive dissolution of Mn oxides, can be identified when Mn oxide removal along redox bars occurs but the Fe oxide coating remains stable. Simultaneous use of Mn and Fe redox bars results in a better temporal and spatial characterization of the soil redox status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EH :

redox potential

WT:

water table

CWB:

climatic water balance

References

  • Bezbaruah AN, Zhang TC (2004) pH, redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater. Biotechnol Bioeng 88:60–70. doi:10.1002/bit.20208

    Article  CAS  PubMed  Google Scholar 

  • Bormann H, Diekkrüger B, Richter O (1996) Effects of data availability on estimation of evapotranspiration. Phys Chem Earth 21:171–175. doi:10.1016/S0079-1946(97)85580-2

    Article  Google Scholar 

  • Castenson KL, Rabenhorst MC (2006) Indicator of reduction in soil (IRIS): evaluation of a new approach for assessing reduced conditions in soil. Soil Sci Soc Am J 70:1222–1226. doi:10.2136/sssaj2005.0130

    Article  CAS  Google Scholar 

  • Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour Res 31:359–371. doi:10.1029/94WR02525

    Article  CAS  Google Scholar 

  • Childs CW (1981) Field-tests for ferrous iron and ferric-organic complexes (on exchange sites or in water soluble forms) in soils. Aust J Soil Res 19:175–180. doi:10.1071/SR9810175

    Article  CAS  Google Scholar 

  • Davydov A, Chuang KT, Sanger AR (1998) Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces. The Journal of Physical Chemistry 102:4745–4752. doi:10.1021/jp980361p

    Article  CAS  Google Scholar 

  • Dorau K, Mansfeldt T (2015) Manganese-oxide–coated redox bars as an indicator of reducing conditions in soils. J Environ Qual 44:696–703

    Article  CAS  PubMed  Google Scholar 

  • Della Puppa K, Momarek M, Bordas F, Bollinger JC, Joussein E (2013) Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J Colloid Interface Sci 399:99–106. doi:10.1016/j.jcis.2013.02.029

    Article  CAS  PubMed  Google Scholar 

  • Fakih M, Davranche M, Dia A, Nowack B, Petitjean P, Chatellier X, Gruau G (2008) A new tool for in situ monitoring of Fe-mobilization in soils. Appl Geochem 23:3372–3383. doi:10.1016/j.apgeochem.2008.07.016

    Article  CAS  Google Scholar 

  • Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements, and observations. In: Sparks DL (ed) Advances in Agronomy. Elsevier Academic Press Inc, San Diego, pp. 1–54

    Google Scholar 

  • IUSS Working Group WRB, 2006. World reference base for soil resources. World Soil Resources Reports No. 103, FAO, Rome

  • Jenkinson BJ, Franzmeier DP (2006) Development and evaluation of iron-coated tubes that indicate reduction in soils. Soil Sci Soc Am J 70:183–191. doi:10.2136/sssaj2004.0323

    Article  CAS  Google Scholar 

  • Kirk G (2004) The biogeochemistry of submerged soils. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Mansfeldt T, Overesch M (2013) Arsenic mobility and speciation in a Gleysol with petrogleyic properties: a field and laboratory approach. J Environ Qual 42:1130–1141. doi:10.2134/jeq2012.0225

  • Ottow JCG (2011) Microbiology of soils. Springer, Heidelberg

    Google Scholar 

  • Owens PR, Wilding LP, Miller WM, Griffin RW (2008) Using iron metal rods to infer oxygen status in seasonally saturated soils. Catena 73:197–203. doi:10.1016/j.catena.2007.07.009

    Article  Google Scholar 

  • Patrick WH, Gambrell RZ, Faulkner SP (1996) Redox measurements of soils. In: Sparks DL et al. (eds) Methods of soil analysis: chemical methods part 3. Soil Science Society of America and American Society of Agronomy, Madison, pp. 1255–1273

    Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96. doi:10.1016/S0065-2113(08)60633-1

  • Rabenhorst MC, Castenson KL (2005) Temperature effects on iron reduction in a hydric soil. Soil Sci 170:734–742. doi:10.1097/01.ss.0000185908.26083.53

    Article  CAS  Google Scholar 

  • Rabenhorst MC (2010) Visual assessment of IRIS tubes in field testing for soil reduction. Wetlands 30:847–852. doi:10.1007/s13157-010-0098-7

    Article  Google Scholar 

  • Rabenhorst MC, Megonigal JP, Keller J (2010) Synthetic iron oxides for documenting sulfide in marsh pore water. Soil Sci Soc Am J 74:1383–1388. doi:10.2136/sssaj2009.0435

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ringrose-Voase AJ, Humphreys GS (1993) Soil micromorphology: studies in management and genesis. Developments in Soil Science, 22. Elsevier, Amsterdam

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134. doi:10.1007/BF00011867

    Article  Google Scholar 

  • Schlesinger WH, Emily SB (2013) Biogeochemistry: an analysis of global change, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Scott MJ, Morgan JJ (1990) Energetics and conservative properties of redox systems. In: American Chemical Society (ed) Chemical modeling of aqueous systems II. ACS Symposium Series, pp 368–378

  • Smith KA (1980) A model of the extent of anaerobic zones in aggregated soils, and its potential application to estimates of denitrification. J Soil Sci 31:263–277

    Article  CAS  Google Scholar 

  • Stiles CA, Dunkinson ET, Ping CL, Kidd J (2010) Initial field installation of manganese indicators of reduction in soils, Brooks Range, Alaska. Soil Survey Horizons 51:102–107

    Article  Google Scholar 

  • Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant Soil 114:217–226. doi:10.1007/BF02220801

    Article  CAS  Google Scholar 

  • Wheeler BD, Al-Farraj MM, Cook RED (1985) Iron toxicity to plants in base-rich wetlands: comparative effect on the distribution and growth of Epilobium Hirsutum L. and Juncus Subnodulosus Schrank. New Phytol 100:653–669. doi:10.1111/j.1469-8137.1985.tb02810.x

    Article  CAS  Google Scholar 

  • Yu K, Patrick WH (2004) Redox window with minimum global warming potential contribution from rice soils. Soil Sci Soc Am J 68:2086–2091. doi:10.2136/sssaj2004.2086

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Verein der Freunde und Förderer der Universität zu Köln. Additionally, we are grateful to the Duke of Croy and Thomas Seine, who enabled the field measurements along the study site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Mansfeldt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorau, K., Eickmeier, M. & Mansfeldt, T. Comparison of Manganese and Iron Oxide-Coated Redox Bars for Characterization of the Redox Status in Wetland Soils. Wetlands 36, 133–141 (2016). https://doi.org/10.1007/s13157-015-0724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0724-5

Keywords

Navigation