Skip to main content

Advertisement

Log in

Plant Species Effects on the Carbon Storage Capabilities of a Blanket bog Complex

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Plants are known to influence peatland carbon fluxes both i) directly through respiration and ii) by the production of litter and root exudates, which are then broken down by microbes within the peat matrix. In this study we investigated whether three different plant species typical of a UK blanket bog complex - Calluna vulgaris, Juncus effusus and mixed Sphagnum species - influence the carbon sequestering abilities of the peat that they grow in. To quantify this we measured fluxes of soil derived CO2 and CH4, and extractable levels of dissolved organic carbon (DOC) and phenolics, from peat samples taken from areas dominated by one of the three plant communities. It was found that there were significant differences between the carbon fluxes from the different sites, which we attributed to changes brought about by the vegetation on the pH, phenolic concentrations and extracellular enzyme activities found in the peat matrix. Peat taken from Sphagnum-dominated areas emitted less CO2 than the other two sample groups, and had lower overall DOC concentrations and phenol oxidase activities. Conversely, Juncus-peat had the highest CO2 and CH4 fluxes, along with the greatest phenol oxidase activities. Taking all the results into consideration the plants were ranked in order of their ability to reduce the loss of carbon from the peat soil within which they were growing: Sphagnum > Calluna > Juncus. These results suggest that plant community structures could be altered in order to maximise a peatland’s ability to be used as a carbon store should they need to be managed as part of a carbon stewardship scheme or a geoengineering project – if this was to be the sole management interest in an area of peatland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant, Cell and Environment 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annual Review of Plant Biology 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bergman I, Svensson BH, Nilsson M (1998) Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biology & Biochemistry 30(6):729–741

    Article  CAS  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural-waters. Water Research 17(5):511–525

    Article  CAS  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hajek M, Hajek T, Lacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America 103(51):19386–19389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bridgham SD, Richardson CJ (1992) Mechanisms on controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biology & Biochemistry 24(11):1089–1099

    Article  CAS  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19:1325–1346

    Article  PubMed  Google Scholar 

  • Chabbi A (1999) Juncus bulbosus as a pioneer species in acidic lignite mining lakes: interactions, mechanism and survival strategies. New Phytologist 144(1):133–142

    Article  CAS  Google Scholar 

  • Chapin FS, BretHarte MS, Hobbie SE, Zhong HL (1996) Plant functional types as predictors of transient reponses of arctic vegetation to global change. Journal of Wetland Science 7(3):347–358

    Google Scholar 

  • Cheng WX (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiology 19(4–5):313–320

    Article  PubMed  Google Scholar 

  • Cheng WX, Johnson DW, Fu SL (2003) Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization. Soil Science Society of America Journal 67(5):1418–1427

    Article  CAS  Google Scholar 

  • Dorodnikov M, Knorr KH, Kuzyakov Y, Wilmking M (2011) Plant-mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: a C-14 pulse-labeling study. Biogeosciences 8(8):2365–2375

    Article  CAS  Google Scholar 

  • Dowrick DJ, Freeman C, Lock MA, Reynolds B (2006) Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132(3–4):384–390

    Article  CAS  Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and sub-Arctic peat soils - response to temperature and pH. Soil Biology & Biochemistry 25(3):321–326

    Article  CAS  Google Scholar 

  • Dunn C, Freeman C (2011) Peatlands: our greatest source of carbon credits? Carbon Management 2(3):289–301

    Article  CAS  Google Scholar 

  • Dunn C, Jones TG, Girard A, Freeman C (2014) Methodologies for extracellular enzyme assays from wetland soils. Wetlands 34(1):9–17

    Article  Google Scholar 

  • Ervin GN, Wetzel RG (2000) Allelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae). American Journal of Botany 87(6):853–860

    Article  CAS  PubMed  Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution 137(1):55–71

    Article  CAS  PubMed  Google Scholar 

  • Evans CD, Jones TG, Burden A, Ostle N, Zielinski P, Cooper MDA, Peacock M, Clark JM, Oulehle F, Cooper D, Freeman C (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology 18(11):3317–3331

    Article  Google Scholar 

  • Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007a) Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environmental Science & Technology 41(9):3146–3152

    Article  CAS  Google Scholar 

  • Fenner N, Ostle NJ, McNamara N, Sparks T, Harmens H, Reynolds B, Freeman C (2007b) Elevated CO2 effects on peatland plant community carbon dynamics and DOC production. Ecosystems 10(4):635–647

    Article  CAS  Google Scholar 

  • Freeman C, Hudson J, Lock MA, Reynolds B, Swanson C (1994) A possible role of sulfate in the supression of wetland methane fluxes following drought. Soil Biology & Biochemistry 26(10):1439–1442

    Article  CAS  Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Jones SE, Lock MA (1995) The use of fluorogenic substrates for measuring enzyme-activity in peatlands. Plant and Soil 175(1):147–152

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon store - A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409(6817):149–149

    Article  CAS  PubMed  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology & Biochemistry 36(10):1663–1667

    Article  CAS  Google Scholar 

  • Freeman C, Fenner N, Shirsat AH (2012) Peatland geoengineering: an alternative approach to terrestrial carbon sequestration. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 370(1974):4404–4421

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. Journal of Experimental Biology 201(8):1203–1209

    CAS  PubMed  Google Scholar 

  • Frolking S, Roulet N, Fuglestvedt J (2006) How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. Journal of Geophysical Research-Biogeosciences 111(G1):10

    Article  Google Scholar 

  • Gauci V, Chapman SJ (2006) Simultaneous inhibition of CH4 efflux and stimulation of sulphate reduction in peat subject to simulated acid rain. Soil Biology & Biochemistry 38(12):3506–3510

    Article  CAS  Google Scholar 

  • Genney DR, Alexander IJ, Hartley SE (2000) Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas. Journal of Experimental Botany 51(347):1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Gray A, Levy PE, Cooper MDA, Jones T, Gaiawyn J, Leeson SR, Ward SE, Dinsmore KJ, Drewer J, Sheppard LJ, Ostle NJ, Evans CD, Burden A, Zielinski P (2013) Methane indicator values for peatlands: a comparison of species and functional groups. Global Change Biology 19(4):1141–1150

    Article  PubMed  Google Scholar 

  • Green SM, Baird AJ, Boardman CP, Gauci V (2014) A mesocosm study of the effect of restoration on methane (CH4) emissions from blanket peat. Wetlands Ecology and Management 22(5):523–537

    Article  CAS  Google Scholar 

  • Hansell DA, Kadko D, Bates NR (2004) Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean. Science 304(5672):858–861

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiological Reviews 60(2):439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henneberg A, Sorrell BK, Brix H (2012) Internal methane transport through Juncus effusus: experimental manipulation of morphological barriers to test above- and below-ground diffusion limitation. New Phytologist 196(3):799–806

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Stankiewicz BA, Eglinton G, Snape CE, Evans B, Latter PM, Ineson P (1998) Monitoring Biomacromolecular degradation of Calluna vulgaris in a 23 year field experiment using solid state 13C-NMR and pyrolysis-GC/MS. Soil Biology and Biochemistry 30(12):1517–1528

    Article  CAS  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark A (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30(1):111–124

    Article  Google Scholar 

  • Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnology and Oceanography 45(4):862–870

    Article  CAS  Google Scholar 

  • Kuiper JJ, Mooij WM, Bragazza L, Robroek BJ (2014) Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology 95(1):123–131

    Article  PubMed  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 165(4):382–396

    Article  CAS  Google Scholar 

  • Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany 105(1):141–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19(4):409–421

    Article  CAS  Google Scholar 

  • Levy PE, Gray A, Leeson SR, Gaiawyn J, Kelly MPC, Cooper MDA, Dinsmore KJ, Jones SK, Sheppard LJ (2011) Quantification of uncertainity in trace gas fluxes measured by the static chamber method. European Journal of Soil Science 62:811–821

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications - a synthesis. Biogeosciences 5(6):1475–1491

    Article  CAS  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology 90(1):25–36

    Article  Google Scholar 

  • Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biology 8(9):872–884

    Article  Google Scholar 

  • Pastor J, Solin J, Bridgham SD, Updegraff K, Harth C, Weishampel P, Dewey B (2003) Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 100(2):380–386

    Article  Google Scholar 

  • Pind A, Freeman C, Lock MA (1994) Enzymatic degradation of phenolic materials in peatlands - measurement of Phenol Oxidase activity. Plant and Soil 159(2):227–231

    Article  CAS  Google Scholar 

  • Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38(1):35–39

    Article  CAS  Google Scholar 

  • Roura-Carol M, Freeman C (1999) Methane release from peat soils: effects of Sphagnum and Juncus. Soil Biology & Biochemistry 31(2):323–325

    Article  CAS  Google Scholar 

  • Royal Society (2009) Geoengineering the climate. Science, governance and uncertainty. The Royal Society, London

    Google Scholar 

  • Schimel JP (1995) Plant-transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28(3):183–200

    Article  CAS  Google Scholar 

  • Shackle VJ, Freeman C, Reynolds B (2000) Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biology & Biochemistry 32(13):1935–1940

    Article  CAS  Google Scholar 

  • Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. Journal of Ecology 84(2):239–246

    Article  CAS  Google Scholar 

  • Sorrell BK (1999) Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant, Cell and Environment 22(12):1587–1593

    Article  CAS  Google Scholar 

  • Strack M, Waddington JM, Bourbonniere RA, Buckton EL, Shaw K, Whittington P, Price JS (2008) Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes 22(17):3373–3385

    Article  CAS  Google Scholar 

  • Strom L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology 9(8):1185–1192

    Article  Google Scholar 

  • Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biology & Biochemistry 43(2):413–420

    Article  CAS  Google Scholar 

  • Tipping E, Woof C, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Poskitt J, Rowland AP, Bol R, Harkness DD (1999) Climatic influences on the leaching of dissolved organic matter from upland UK Moorland soils, investigated by a field manipulation experiment. Environment International 25(1):83–95

    Article  CAS  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecological Applications 11(2):311–326

    Google Scholar 

  • van der Heijden E, Boon JJ (1994) A combined pyrolysis mass spectrometric and light microscopic study of peatified Calluna wood isolated from raised bog peat deposits. Organic Geochemistry 22(6):903–919

    Article  Google Scholar 

  • Van Veen JA, Liljeroth E, Lekkerkerk LJA, Vandegeijn SC (1991) Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecological Applications 1(2):175–181

    Article  Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ (2007) Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems 10(7):1069–1083

    Article  CAS  Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology 23(2):454–462

    Article  Google Scholar 

  • Ward SE, Ostle NJ, McNamara NP, Bardgett RD (2010) Litter evenness influences short-term peatland decomposition processes. Oecologia 164(2):511–520

    Article  PubMed  Google Scholar 

  • Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD (2013) Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters 16(10):1285–1293

    Article  PubMed  Google Scholar 

  • Wetzel RG, Howe MJ (1999) High production in a herbaceous perennial plant achieved by continuous growth and synchronized population dynamics. Aquatic Botany 64(2):111–129

    Article  Google Scholar 

  • Wikum DA, Shanholtzer GF (1978) Application of Braun-Blanquet cover-abundance scale for vegetation analysis in land-development studies. Environmental Management 2(4):323–329

    Article  Google Scholar 

  • Williams CJ, Shingara EA, Yavitt JB (2000) Phenol oxidase activity in peatlands in New York State: response to summer drought and peat type. Wetlands 20(2):416–421

    Article  Google Scholar 

  • Worrall F, Evans MG, Bonn A, Reed MS, Chapman D, Holden J (2009) Can carbon offsetting pay for upland ecological restoration? Science of the Total Environment 408(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Artz RRE, Johnson D (2008) Species-specific effects of plants colonising cutover peatlands on patterns of carbon source utilisation by soil microorganisms. Soil Biology & Biochemistry 40(2):544–549

    Article  CAS  Google Scholar 

  • Zhai X, Piwpuan N, Arias CA, Headley T, Brix H (2013) Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems? Ecological Engineering 6:555–563

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Knowledge and Economy Skills Scholarship, which is part funded by the European Social Fund through the European Union’s Convergence programme and administered by the Welsh Assembly Government. We would also like to thank George Meyrick of Energy and Environment Business Services for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dunn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 21 kb)

Table S2

(DOCX 32 kb)

Table S3

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunn, C., Jones, T.G., Roberts, S. et al. Plant Species Effects on the Carbon Storage Capabilities of a Blanket bog Complex. Wetlands 36, 47–58 (2016). https://doi.org/10.1007/s13157-015-0714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0714-7

Keywords

Navigation