Skip to main content

Advertisement

Log in

The Geochemistry of Amazonian Peats

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The chemical, physical and palaeobotanical composition of peat can be used to infer the history of a peatland and the processes presently operating within it. Here we present new data on the geochemistry of a peat sequence from a lowland palm swamp, Quistococha, in Peruvian Amazonia. We show, through comparison with subfossil pollen data from the same sequence, that changes in the depositional environment cause changes in peat properties including lignin content, C/N ratios, and the abundance of several metal cations, but that these properties are altered by post-depositional processes to a large extent. An upward trend in the top 1.5 m of the sequence in the concentrations of N, K, Ca, Mg and Na probably reflects nutrient uptake and cycling by the standing biomass. Upward trends in Mn and Fe concentrations suggest that limited oxygenation of the peat may occur to a similar depth. Comparison with other published records suggests that such deep biological alteration may be characteristic of tropical forested peats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anshari GZ, Afifudin M, Nuriman M, Gusmayanti E, Arianie L, Susana R, Nusantara RW, Sugardjito J, Rafiastanto A (2010) Drainage and land use impacts on changes in selected peat properties and peat degradation in west Kalimantan province, Indonesia. Biogeosciences 7:3403–3419

    Article  CAS  Google Scholar 

  • Armstrong W (1964) Oxygen diffusion from the roots of some British bog plants. Nature 204:801–802

    Article  CAS  Google Scholar 

  • Aucour A-M, Bonnefille R, Hillaire-Marcel C (1999) Sources and accumulation rates of organic carbon in an equatorial peat bog (Burundi, east africa) during the holocene: carbon isotope constraints. Palaeogeogr Palaeoclimatol Palaeoecol 150:179–189

    Article  Google Scholar 

  • Bauer IE (2004) Modelling effects of litter quality and environment on peat accumulation over different time‐scales. J Ecol 92:661–674

    Article  Google Scholar 

  • Benjamin MM, Honeyman BD (2000) Trace metals. In: Jacobson MC, Charlson RJ, Rodhe H, Orians GH (eds) Earth System Science: From Biogeochemical Cycles to Global Change. Elsevier, Amsterdam, pp 377–418

    Google Scholar 

  • Biester H, Hermanns Y-M, Martinez Cortizas A (2012) The influence of organic matter decay on the distribution of major and trace elements in ombrotrophic mires – a case study from the Harz mountains. Geochim Cosmochim Acta 84:126–136

    Article  CAS  Google Scholar 

  • Boggie R (1977) Water-table depth and oxygen content of deep peat in relation to root growth of Pinus contorta. Plant Soil 48:447–454

    Article  Google Scholar 

  • Bourdon S, Laggoun-Défarge F, Disnar JR, Maman O, Guillet B, Derenne S, Largeau C (2000) Organic matter sources and early diagenetic degradation in a tropical peaty marsh (Tritrivakely, Madagascar). implications for environmental reconstruction during the Sub-Atlantic. Org Geochem 31:421–438

    Article  CAS  Google Scholar 

  • Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia. PhD thesis, University of British Columbia

  • Bragazza L, Gerdol R, Rydin H (2003) Effects of mineral and nutrient input on mire bio-geochemistry in two geographical regions. J Ecol 91:417–426

    Article  CAS  Google Scholar 

  • British Standard BS 7755 (1995). British standard BS 7755, section 3.9: 1995, ISO 11466. soil quality Part 3. Chemical methods section 3.9 extraction of trace elements soluble in aqua regia.

  • Brncic TM, Willis KJ, Harris DJ, Telfer MW, Bailey RM (2009) Fire and climate change impacts on lowland forest composition in northern Congo during the last 2850 years from palaeoecological analyses of a seasonally flooded swamp. The Holocene 19:79–89

    Article  Google Scholar 

  • Cameron CC, Esterle JS, Palmer CA (1989) The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitutes. Int J Coal Geol 12:105–156

    Article  CAS  Google Scholar 

  • Chagué-Goff C, Fyfe WS (1996) Geochemical and petrographical characteristics of a domed bog, nova Scotia: a modern analogue for temperate coal deposits. Org Geochem 24:141–158

    Article  Google Scholar 

  • Damman AWH (1978) Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30:480–495

    Article  CAS  Google Scholar 

  • Disnar JR, Stefanova M, Bourdon S, Laggoun-Défarge F (2005) Sequential fatty acid analysis of a peat core covering the last two millennia (Tritrivakely lake, Madagascar): diagenesis appraisal and consequences for palaeoenvironmental reconstruction. Org Geochem 36:1391–1404

    Article  CAS  Google Scholar 

  • Dudley R, Kaspari M, Yanoviak SP (2012) Lust for salt in the western Amazon. Biotropica 44:6–9

    Article  Google Scholar 

  • Dungait JA, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Fortescue JAC (1992) Landscape geochemistry: retrospect and prospect–1990. Appl Geochem 7:1–53

    Article  CAS  Google Scholar 

  • Fritz C, Pancotto VA, Elzenga JTM, Visser EJW, Grootjans AP, Pol A, Iturraspe R, Roelofs JGM, Smolders AJP (2011) Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in patagonia. New Phytol 190:398–408

    Article  PubMed  Google Scholar 

  • Gorham E, Janssens JA (1992) The paleorecord of geochemistry and hydrology in northern peatlands and its relation to global change. Suo 43:1127–1126

    Google Scholar 

  • Hergoualc’h K, Verchot LV (2011) Stocks and fluxes of carbon associated with land use in southeast Asian tropical peatlands: a review. Glob Biogeochem Cycles 25:GB2001

    Google Scholar 

  • Higgins MA, Ruokolainen K, Tuomisto H, Llerena N, Cardenas G, Phillips OL, Vásquez R, Räsänen M (2011) Geological control of floristic composition in Amazonian forests. J Biogeogr 38:2136–2149

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in southeast Asia. Biogeosciences 7:1505–1514

    Article  CAS  Google Scholar 

  • Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071

    Article  CAS  Google Scholar 

  • Jauhiainen J, Limin S, Silvennoinen H, Vasander H (2008) Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–3514

    Article  PubMed  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Jones J, Hao J (1993) Ombrotrophic peat as a medium for historical monitoring of heavy metal pollution. Environ Geochem Health 15:67–74

    Article  PubMed  CAS  Google Scholar 

  • Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–248

    Article  Google Scholar 

  • Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proc Natl Acad Sci U S A 106:19405–19409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Honorio Coronado EN, Ríos M, Lawson IT (2013) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process. doi:10.1002/hyp.9884

    Google Scholar 

  • King JA, Smith KA, Pyatt DG (1986) Water and oxygen regimes under conifer plantations and native vegetation on upland peaty gley soil and deep peat soils. J Soil Sci 37:485–497

    Article  Google Scholar 

  • Kuhry P, Vitt DH (1997) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275

    Article  Google Scholar 

  • Lähteenoja O, Page SE (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañon basin, Peruvian Amazonia. J Geophys Res 116:G02025

    Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009a) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145

    Article  Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009b) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 25:2311–2320

    Article  Google Scholar 

  • Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in central Amazonia. Wetlands. doi:10.1007/s13157–013–0406–0

    Google Scholar 

  • Malmer N, Holm E (1984) Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210Pb. Oikos 43:171–182

    Article  CAS  Google Scholar 

  • Malmer N, Wallén B (1999) The dynamics of peat accumulation on bogs: mass balance of hummocks and hollows and its variation throughout a millennium. Ecography 22:736–750

    Article  Google Scholar 

  • Malmer N, Wallén B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. The Holocene 14:111–117

    Article  Google Scholar 

  • Maloney BK, McCormac FG (1995) A 30,000-year pollen and radiocarbon record from highland Sumatra as evidence for climatic change. Radiocarbon 37:181–190

    CAS  Google Scholar 

  • Marengo JA (1998) Climatologia de la zona de Iquitos, Peru. In: Kalliola R, Flores Paitan S (eds) Geoecologia y desarrollo amazonico: studio intergrado en la zona de Iquitos, Peru. Annales Universitatis Turkuensis Ser A 114, University of Turku, Finland, pp 35–57

    Google Scholar 

  • Mertes LAK (1997) Documentation and significance of the perirheic zone on inundated floodplains. Water Resour Res 33:1749–1762

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  CAS  Google Scholar 

  • Meyers PA, Lallier-Verges E (1999) Lacustrine sedimentary organic matter records of late quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  • Muller J, Wüst RAJ, Weiss D, Hu Y (2006) Geochemical and stratigraphic evidence of environmental change at Lynch’s crater, Queensland, Australia. Glob Planet Chang 53:269–277

    Article  Google Scholar 

  • Neuzil SG (1997) Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, Indonesia. In: Rieley JO, Page SE (eds) Biodiversity and Sustainability of Tropical Peatlands. Samara Publishing Limited, Cardigan, pp 55–72

    Google Scholar 

  • Neuzil SG, Cecil CB, Kane JS, Soedjono K (1993) Inorganic geochemistry of domed peat in Indonesia and its implication for the origin of mineral matter in coal. Geol Soc Am Spec Pap 286:23–44

    Article  Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  PubMed  CAS  Google Scholar 

  • Page SE, Wüst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:625–635

    Article  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011a) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818

    Article  Google Scholar 

  • Page SE, Morrison R, Malins C, Hooijer A, Rieley JO, Jauhiainen J (2011b) Review of peat surface greenhouse gas emissions from oil palm plantations in southeast Asia. The International Council on Clean Transportation, Washington, White Paper Number 15

    Google Scholar 

  • Pella E (1990) Elemental organic analysis. Part 2: state of the art. Am Lab 22:28–32

    CAS  Google Scholar 

  • Polak B (1975) Character and occurrence of peat deposits in the Malaysian tropics. In: Bartstra G-J, Casparie WA (eds) Modern Quaternary Research in Southeast Asia. AA Balkema, Rotterdam, pp 71–82

    Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M (2009) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosciences Discussion 6:3993–4057

    Article  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M (2010) Variations in chemical and physical properties of amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541

    Article  CAS  Google Scholar 

  • Räsänen ME, Salo JS, Jungner H (1991) Holocene floodplain lake sediments in the amazon: 14C dating and palaeoecological use. Quat Sci Rev 10:363–372

    Article  Google Scholar 

  • Reimer PJ, Brown TA, Reimer RW (2004) Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304

  • Reynolds V, Lloyd AW, Babweteera F, English CJ (2009) Decaying Raphia farinifera palm trees provide a source of sodium for wild chimpanzees in the Budongo forest, Uganda. PLoS One 4:e6194

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez Pereira LA, Ribeiro Calbo ME, Juvenir Ferreira C (2000) Anatomy of pneumatophore of Mauritia vinifera mart. Braz Arch Biol Technol 43:327–333

    Article  Google Scholar 

  • Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EN, Gosling WD, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255

    Article  Google Scholar 

  • Rowland AP, Roberts JD (1994) Lignin and cellulose fractionation in decomposition studies using acid‐detergent fibre methods. Commun Soil Sci Plant Anal 25:269–277

    Article  CAS  Google Scholar 

  • Shepherd PA, Rieley JO, Page SE (1997) The relationship between forest vegetation and peat characteristics in the upper catchment of Sungai Sebangau, Central Kalimantan. In: Rieley JO, Page SE (eds) Biodiversity and Sustainability of Tropical Peatlands. Samara Publishing Limited, Cardigan, pp 191–210

    Google Scholar 

  • Shotyk W (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci Rev 25:95–176

    Article  CAS  Google Scholar 

  • Shotyk W, Nesbitt HW, Fyfe WS (1990) The behaviour of major and trace elements in complete vertical peat profiles from three sphagnum bogs. Int J Coal Geol 15:163–190

    Article  CAS  Google Scholar 

  • Troels-Smith J (1955) Karakterisering af Løse Jordater. Geological Society of Denmark/Rietzels Forlag, Copenhagen, p 73

    Google Scholar 

  • Vásquez-Ocmín PG, Sotero SVE, Del Castillo TD, Freitas AL, Maco LMM (2009) Diferenciación química de tres morfotipos de Mauritia flexuosa L.f. de la Amazonía Peruana. Revista de la Sociedad Química del Perú 75:320–328

    Google Scholar 

  • Viers J, Barroux G, Pinelli M, Seyler P, Oliva P, Dupré B, Resende Boaventura G (2005) The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the amazon river mainstem (Brazil). Sci Total Environ 339:219–232

    Article  PubMed  CAS  Google Scholar 

  • Weiss D, Shotyk W, Rieley J, Page S, Gloor M, Reese S, Martinez-Cortizas A (2002) The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim Cosmochim Acta 66:2307–2323

    Article  CAS  Google Scholar 

  • Wüst RAJ (2001) Holocene evolution of the intermontane Tasek Bera peat deposit, Peninsular Malaysia: controls on composition and accumulation of a tropical freshwater peat deposit. PhD thesis, University of British Columbia.

  • Wüst RAJ, Bustin RM (2001) Low-ash peat deposits from a dendritic, intermontane basin in the tropics: a new model for good quality coals. Int J Coal Geol 46:179–206

    Article  Google Scholar 

  • Wüst RAJ, Bustin RM (2003) Opaline and Al-Si phytoliths from a tropical mire system of west Malaysia: abundance, habit, elemental composition, preservation and significance. Chem Geol 200:267–292

    Article  Google Scholar 

  • Wüst RAJ, Ward CR, Bustin RM, Hawke MI (2002) Characterization and quantification of inorganic constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): implications for coals. Int J Coal Geol 49:215–249

Download references

Acknowledgments

We would like to thank NERC (ref. NE/H011773/1), The Royal Geographical Society with IBG, the Quaternary Research Association, the Open University and the University of Leeds for funding; David Ashley, John Corr and Rachel Gasior for help with sample preparation and analysis; Hugo Vásquez, Julio Irarica, and Ruby Jurczyk, for assistance in the field; Victor Reatagui, Ricardo Farroñay Peramas, Luis Campos Baca, Denis del Castillo Torres, and Angel Salazar Vega of the Instituto de Investigaciones de la Amazonía Peruana in Iquitos for their support; Andy Baird, Timothy Baker, Arnoud Boom, Greta Dargie, David Large, and Sheila Palmer for helpful discussions; and three anonymous reviewers for constructive comments which substantially improved the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian T. Lawson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawson, I.T., Jones, T.D., Kelly, T.J. et al. The Geochemistry of Amazonian Peats. Wetlands 34, 905–915 (2014). https://doi.org/10.1007/s13157-014-0552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0552-z

Keywords

Navigation