Skip to main content

Advertisement

Log in

The Importance of Local and Regional Factors on the Vegetation of Created Wetlands in Central Europe

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We assessed the relative importance of regional and local processes to wetland plant diversity in created depressional wetlands in Central Europe (Košské mokrade wetlands, central Slovakia). Twelve wetlands were sampled for vegetation, water chemistry, morphological, and hydrological data in 2008. A total of 39 plant species were found in the wetlands, dominated by Typha latifolia L. The results support the hypothesis that local environmental variables affect both species diversity and composition. Wetland plant diversity was negatively related to electrical conductivity, with a model significantly explaining 34.4 and 31.9% of the variance in species richness and Shannon diversity, respectively. Similarly, species composition was significantly related to local characteristics. A model relating species abundance data to local conditions explained 47.6% of the variation by age (“pure” effect = 18.2%), water depth (15.1%), and conductivity (12.2%). Using measures of connectivity among wetlands, we did not find any significant relationships between plant communities and regional variables. Nevertheless, floristic data revealed significant small-scale (0–500 m) positive autocorrelation, indicating that wetlands in near proximity are more similar in species composition than more distant wetlands. This may suggest that the composition of nearby wetlands plays a role in shaping local communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683–693

    Article  PubMed  Google Scholar 

  • Angélibert S, Indermuehle N, Luchier D, Oertli B, Perfetta J (2006) Where hides the aquatic biodiversity in the Canton of Geneva (Switzerland)? Archives des Sciences 59:225–234

    Google Scholar 

  • Atkinson RB, Perry JE, Cairns J Jr (2005) Vegetation communities of 20-year-old created depressional wetlands. Wetlands Ecology and Management 13:469–478

    Article  Google Scholar 

  • Biebighauser TR (2007) Wetland drainage, restoration, and repair. The University Press of Kentucky, Kentucky

    Google Scholar 

  • Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A (2005) Fifteen years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15:693–714

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial components of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Bornette G, Amoros C, Chessel D (1994) Effect of allogenic processes on successional rates in former river channels. Journal of Vegetation Science 5:237–246

    Article  Google Scholar 

  • Botts SP (1997) Spatial pattern, patch dynamics and successional change: chironomid assemblages in a Lake Erie coastal wetland. Freshwater Biology 37:277–286

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs 27:325–349

    Article  Google Scholar 

  • Brown SC (1998) Remnant seed banks and vegetation as predictors of restored marsh vegetation. Canadian Journal of Botany 76:620–629

    Google Scholar 

  • Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Communications in Statistics 3:1–27

    Article  Google Scholar 

  • Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Analytical Chemistry 28:1756–1758

    Article  CAS  Google Scholar 

  • Craft C, Reader J, Sacco JN, Broome SW (1999) Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications 9:1405–1419

    Article  Google Scholar 

  • De Meester L, Declerck S, Stoks R, Louette G, van der Meutter F, de Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems 15:715–725

    Article  Google Scholar 

  • DeBerry DA, Perry JE (2004) Primary succession in a created freshwater wetland. Castanea 69:185–193

    Article  Google Scholar 

  • del Moral R, Wood DM, Titus JH (2005) Proximity, microsites and biotic interactions during early succession. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, pp 93–109

    Chapter  Google Scholar 

  • Drdoš J, Székely V (1994) Environmental quality and the possibilities of environmental promotion (Upper Nitra region). GeoJournal 32:225–229

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymetrical approach. Ecological Monographs 67:345–366

    Google Scholar 

  • Edvardsen A, Økland RH (2006) Variation in plant species richness in and adjacent to 64 ponds in SE Norwegian agricultural landscapes. Aquatic Botany 85:79–91

    Article  Google Scholar 

  • European Pond Conservation Network (2007) Developing the pond manifesto. Annales de Limnologie - International Journal of Limnology 43:221–232

    Article  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Fennessy MS, Cronk JK, Mitsch WJ (1994) Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions. Ecological Engineering 3:469–484

    Article  Google Scholar 

  • Freestone AL, Inouye AD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87:2425–2432

    Article  PubMed  Google Scholar 

  • Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:34–347

    Article  Google Scholar 

  • Heegaard E, Birks HH, Gibson ChE, Smith SJ, Wolfe-Murphy S (2001) Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquatic Botany 70:175–223

    Article  Google Scholar 

  • Heino J (2008) Influence of taxonomic resolution and data transformation on biotic matrix concordance and assemblage-environment relationships in stream macroinvertebrates. Boreal Environmental Research 13:359–369

    Google Scholar 

  • Hejný S (1960) Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den slowakischen Tiefebenen (Donau- und Theissgebieten). Vydavateľstvo SAV, Bratislava

    Google Scholar 

  • Herault B, Thoen D (2009) How habitat area, local and regional factors shape plant assemblages in isolated closed depressions. Acta Oecologica 35:385–392

    Article  Google Scholar 

  • Houlahan JE, Findlay CS (2004) Estimating the ‘critical’ distance at which adjacent land-use degrades wetland water and sediment quality. Landscape Ecology 19:677–690

    Article  Google Scholar 

  • Hrivnák R, Oťaheľová H, Kochjarová J, Dúbravková D (2009) Makrofytná vegetácia vodných nádrží Nízkych Tatier (Slovensko). Bulletin Slovenskej Botanickej Spoločnosti 31:41–51

    Google Scholar 

  • Johnson AM, Leopold DJ (1994) Vascular plant species richness and rarity across a minerotrophic gradient in wetlands of St. Lawrence County, New York, USA. Biodiversity and Conservation 3:606–627

    Article  Google Scholar 

  • Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. The Botanical Review 71:449–482

    Article  Google Scholar 

  • Klimešová J, Martínková J, Kočvarová M (2004) Biological flora of central Europe: Rorippa palustris (L.) Besse. Flora 199:453–463

    Google Scholar 

  • Klimešová J, Sosnová M, Martínková J (2007) Life-history variation in the short-lived herb Rorippa palustris: effect of germination date and injury timing. Plant Ecology 189:237–246

    Article  Google Scholar 

  • Klimešová J, Kociánová A, Martínková J (2008) Weeds that can do both tricks: vegetative versus generative regeneration of the short-lived root-sprouting herbs Rorippa palustris and Barbarea vulgaris. Weed Research 48:131–135

    Article  Google Scholar 

  • Köck UV (1988) Ökologische Aspekte der Ausbreitung von Bidens frondosa L. in Mitteleuropa. Verdrängt er Bidens tripartita L.? Flora 180:177–190

    Google Scholar 

  • Kohler A (1978) Methoden der Kartierung von Flora und Vegetation von Süßwasserbiotopen. Landschaft + Stadt 10:73–85

    Google Scholar 

  • Kohler A, Janauer GA (1995) Zur Methodik der Untersuchungen von aquatischen Makrophyten in Fließgewässern. In: Steinberg Ch, Bernhardt H, Klapper H (eds) Handbuch Angewandte Limnologie. Ecomed Verlag, Lansberg/Lech, pp 1–22

    Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14:89–136

    Article  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69:1–24

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601–613

    Article  Google Scholar 

  • Mäkelä S, Huitu E, Arvola L (2004) Spatial patterns in aquatic vegetation composition and environmental covariates along chains of lakes in the Kokemäenjoki watershed (S. Finland). Aquatic Botany 80:253–269

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220

    PubMed  CAS  Google Scholar 

  • Marhold K, Hindák F (eds) (1998) Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava

    Google Scholar 

  • Matthews JW, Endress AG (2010) Rate of succession in restored wetlands and the role of site context. Applied Vegetation Science. doi:10.1111/j.1654-109X.2010.01076.x

    Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Miklós L (ed) (2002) Landscape atlas of the Slovak Republic, 1st edn. Ministry of Environment of the Slovak Republic. Slovak Environmental Agency, Banská Bystrica

  • Mitch WJ, Zhang L, Anderson ChJ, Altor AE, Hernández ME (2005) Creating riverine wetlands: ecological succession, nutrient retention, and pulsing effects. Ecological Engineering 25:510–527

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, NY

    Google Scholar 

  • Moore PD (2006) Wetlands (Biomes of the Earth). Chelsea House publishers, NY

    Google Scholar 

  • Moravcová L, Zákravský P, Hroudová Z (2001) Germination and seedling establishment in Alisma gramineum, A. plantago-aquatica and A. lanceolatum under different environmental conditions. Folia Geobotanica 36:131–146

    Article  Google Scholar 

  • Murdoch DJ, Chow ED (1996) A graphical display of large correlation matrices. The American Statistician 50:178–180

    Article  Google Scholar 

  • Niering WA (1989) Wetland vegetation development. In: Majumdar SK, Brooks RP, Brenner FJ, Tiner JRW (eds) Wetlands ecology conservation: emphasis in Pennsylvania. Pennsylvania Academy of Science, Easton, pp 103–113

    Google Scholar 

  • Oden NL, Sokal RR (1986) Directional autocorrelation: an extension of spatial correlograms to two dimensions. Systematic Zoology 35:608–617

    Article  Google Scholar 

  • Odland A (1997) Development of vegetation in created wetlands in western Norway. Aquatic Botany 59:45–62

    Article  Google Scholar 

  • Odland A, del Moral R (2002) Thirteen years of wetland vegetation succession following a permanent drawdown, Myrkdalen Lake, Norway. Plant Ecology 162:185–198

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Odum WE (1988) Predicting ecosystem development following creation and restoration of wetlands. In: Zelazny J, Feierabend JS (eds) Wetlands: increasing our wetland resourses. National Wildlife Federation, Washington, pp 67–70

    Google Scholar 

  • Oertli B, Céréghino R, Hull A, Miracle R (2009) Pond conservation: from science to practice. Hydrobiologia 634:1–9

    Article  Google Scholar 

  • Oťaheľová H, Oťaheľ J (2006) Distribution of aquatic macrophytes in pit lakes in relation to the environment (Borská nížina lowland, Slovakia). Ekológia 25:398–411

    Google Scholar 

  • Penning WE, Mjelde M, Dudley B, Hellsten S, Hanganu J, Kolada A, van den Berg M, Poikane S, Phillips G, Willby N, Ecke F (2008) Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42:237–251

    Article  CAS  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology: approaches and alternatives. Springer, New York, pp 110–135

    Google Scholar 

  • Reed DJ (1993) Hydrology of temperate wetlands. Progress in Physical Geography 17:20–31

    Article  Google Scholar 

  • Reinhartz JA, Warne EL (1993) Development of vegetation in small created wetlands in Southeastern Wisconsin. Wetlands 13:153–164

    Article  Google Scholar 

  • Roff DA (2006) Introduction to computer-intensive methods of data analysis in biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rolon AS, Lacerda T, Maltchik L, Guadagnin DL (2008) Influence of area, habitat and water chemistry on richness and composition of macrophyte assemblages in southern Brazilian wetlands. Journal of Vegetation Science 19:221–228

    Article  Google Scholar 

  • Sanderson BG, Asaeda T, Rajapakse L, Redden AM (2008) Mechanisms affecting biomass and distribution of charophytes and Najas marina in Myall Lake, New South Wales, Australia. Hydrobiologia 608:99–119

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. The University of Illinois Press, Urbana

    Google Scholar 

  • Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application in analysis of the vegetation on Danish commons. Biologiske Skrifter Det Kongelige Danske Videnskabernes Selskab 5:1–34

    Google Scholar 

  • Šumberová K, Lososová Z, Fabšičová M, Horáková V (2006) Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia 78:235–252

    Google Scholar 

  • Svitok M, Novikmec M, Bitušík P (2009) Košské mokrade wetlands: mining-induced biodiversity. European Pond Conservation Network Newsletter 2:9–10

    Google Scholar 

  • Toivonen H, Huttunen P (1995) Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Botany 51:197–221

    Article  Google Scholar 

  • Urban MC (2004) Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85:2971–2978

    Article  Google Scholar 

  • Valachovič M, Oťaheľová H, Stanová V, Maglocký Š (1995) Rastlinné spoločenstvá Slovenska 1. Pionierska vegetácia. Veda, Bratislava

    Google Scholar 

  • van der Valk AG (1981) Succession in wetlands: a Gleasonian approach. Ecology 62:688–696

    Article  Google Scholar 

  • van der Valk AG (2006) The biology of freshwater wetlands. Oxford University Press, Oxford

    Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wilcox DA (2004) Implications of hydrologic variability on the succession of plants in Great Lakes wetlands. Aquatic Ecosystem Health & Management 7:223–231

    Article  Google Scholar 

  • Wilcox DA, Nichols SJ (2008) The effects of water-level fluctuations on vegetation in a Lake Huron wetland. Wetlands 28:487–501

    Article  Google Scholar 

  • Willby NJ, Abernethy VJ, Demars OLB (2000) Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biology 43:43–74

    Article  Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2003) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115:329–341

    Article  Google Scholar 

  • Wisheu IC, Keddy PA (1992) Competition and centrifugal organization of plant communities: theory and tests. Journal of Vegetation Science 3:147–156

    Article  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30:39–74

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful for critical reviews and language correction of an early version of the manuscript by M. Novikmec and D. W. Hardekopf. This study was supported by the Scientific Grant Agency of the Ministry of Education and the Slovak Academy of Sciences (VEGA grant numbers 2/0013/08 and 1/0529/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Svitok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svitok, M., Hrivnák, R., Oťaheľová, H. et al. The Importance of Local and Regional Factors on the Vegetation of Created Wetlands in Central Europe. Wetlands 31, 663–674 (2011). https://doi.org/10.1007/s13157-011-0182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-011-0182-7

Keywords

Navigation