Skip to main content

Advertisement

Log in

Potential Carbon Mineralization of Permafrost Peatlands in Great Hing’an Mountains, China

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Peatlands play a significant role in global carbon (C) cycles. Through incubation experiments of peat samples selected in the discontinuous permafrost zone of the Great Hing’an Mountains, we studied the effects of temperature and moisture on potential CO2 emission. Rates of C mineralization decreased with soil depth, increased with temperature, and reached the highest rates at 60% WHC (water holding capacity) at the same temperature. Total C mineralization ranged from 10.3 to 95.0 mg under the treatments for 40 d incubation and was significantly affected by soil temperature and moisture (P < 0.001). Calculated Q 10 values ranged from 2.1 to 2.7, and the average values could be used for multiple regression functions. We successfully predicted C mineralization as a function of incubation time, temperature, and moisture (P < 0.001) and estimated the peat C mineralization under future climate scenarios. The results indicated that C mineralization of peatlands would be accelerated under warming temperature. The peatlands in our study area would be a potential CO2 source to the atmosphere with future climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Basiliko N, Blodau C, Roehm C et al (2007) Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10:1148–1165

    Article  CAS  Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecol 79:1545–1561

    Article  Google Scholar 

  • Bubier J, Grill PM, Moore TR et al (1998) Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob Biogeochem Cycles 12:703–714

    Article  CAS  Google Scholar 

  • Camill P (1999) Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming. Botany 77:721–733

    Article  Google Scholar 

  • Chapman SJ, Thurlow M (1998) Peat respiration at low temperatures. Soil Biol Biochem 30:1013–1021

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Ding YH, Ren GY, Shi GY et al (2006) National assessment report of climate change (I):climate change in China and its future trend. Chin J Adv Climate Change Res 2:3–10

    Google Scholar 

  • Dorrepaal E, Toet S, Logtestjin SP et al (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619

    Article  CAS  Google Scholar 

  • Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33:155–165

    Article  CAS  Google Scholar 

  • Fang C, Smith P, Moncrieff JB et al (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    Article  CAS  PubMed  Google Scholar 

  • Gao JQ, Ouyang H, Xu XL et al (2009) Effects of temperature and water saturation on CO2 production and nitrogen mineralization in alpine wetland soils. Pedosphere 19:71–77

    Article  CAS  Google Scholar 

  • Glatzel S, Basiliko N, Moore TR (2004) Carbon dioxide and methane production potentials of peats form natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24:261–267

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Goulden ML (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217

    Article  CAS  PubMed  Google Scholar 

  • Hogg EH, Lieffers VJ, Wein RW (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecol Appl 2:298–306

    Article  Google Scholar 

  • Huissteden JV, Bos R, Alvarez IM (2006) Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Neth J Geosci 85:3–18

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Scientific Basis. Cambridge University Press

  • Jin HJ, Yu QH, Guo DX et al (2007) Degradation of permafrost in the Xing’an Mountains, Northeast China. Permafrost Periglac Process 18:245–258

    Article  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition -still a topic of debate. Soil Biol Biochem 38:2510–2518

    Article  CAS  Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT et al (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    Article  CAS  Google Scholar 

  • Lomander A, Kätterer T, Andrén O (1998) Modelling the effects of temperature and moisture on CO2 evolution from top-and subsoil using a multi-compartment approach. Soil Biol Biochem 30:2023–2030

    Article  CAS  Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664

    Article  CAS  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A et al (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Climate Dyn 22:13–31

    Article  Google Scholar 

  • Reichstein M, Bednorz F, Broll G et al (2000) Temperature dependence of carbon mineralization: conclusions from a long-term incubation of subalpine soil samples. Soil Biol Biochem 32:947–958

    Article  CAS  Google Scholar 

  • Reichstein M, Subke JA, Angeli AC et al (2005) Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Global Change Biology 11:1754–1767

    Article  Google Scholar 

  • Rey A, Petsikos C, Jarvis PG et al (2005) Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur J Soil Sci 56:589–599

    Article  CAS  Google Scholar 

  • Scanlon D, Moore TR (2000) Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–160

    Article  CAS  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH et al (2007) The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob Change Biol 13:1922–1934

    Article  Google Scholar 

  • Turetsky MR (2004) Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past. Ecosystems 7:740–750

    Article  CAS  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH (2002) Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–912

    Article  CAS  Google Scholar 

  • Turunen J, Tomppe E, Tolonen K et al (2002) Estimating carbon accumulation rates of undrained mires in Finland-application to boreal and subarctic regions. Holocene 12:165–181

    Article  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J et al (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol Appl 11:311–326

    Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD et al (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163

    Article  Google Scholar 

  • Waddington JM, Rotenberg PA, Warren FJ et al (2001) Peat CO2 production in a natural and cutover peatland: implications for restoration. Biogeochemistry 54:115–130

    Article  CAS  Google Scholar 

  • Wang M, Ji LZ, Li QR et al (2003) Effects of soil temperature and moisture on soil respiration in different forest types in Changbai Mountain. Chin J Appl Ecol 14:1234–1238

    Google Scholar 

  • Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils. Ecosystems 6:129–143

    Article  CAS  Google Scholar 

  • Wennman P, Kätterer T (2006) Effects of moisture and temperature on carbon and nitrogen mineralization in mine tailings mixed with sewage sludge. J Environ Qual 35:1135–1140

    Article  CAS  PubMed  Google Scholar 

  • Wu JG, Ai L, Zhu G et al (2007) Mineralization of soil organic carbon and its motivating factors to the dragon spruce forest and alpine meadows of the Qilian Mountains. Chin J Acta Agrestia Sin 15:20–28

    Google Scholar 

  • Yang GR, Zhang WJ, Tong CL et al (2005) Effects of temperature on the mineralization of organic carbon in sediment t of wetland. Chin J Ecol Sci 25:243–248

    Google Scholar 

  • Yang JS, Liu JS, Sun LN (2008) Effects of temperature and soil moisture on wetland soil organic carbon mineralization. Chin J Ecol Sci 27:38–42

    Google Scholar 

  • Yin SC (1991) Peat resources of China. Chin J Earth Sci Front 6:116–124

    Google Scholar 

  • Zhang WJ, Tong CL, Yang GR et al (2005) Effects of water on mineralization of organic carbon in sediment from wetlands. Chin J Ecol Sci 25:249–253

    Google Scholar 

  • Zhang ZY (2000) Development and utilization of peat resources. Chinese Jilin Science and Technology Press, Changchun, China

    Google Scholar 

Download references

Acknowledgments

We thank Mr. Zhenling Gao for assistance in field work, and Ms. Zhou and Professor Wang for assistance with the incubation experiment at Northeast Normal University. This study was funded by the National Natural Science Foundation of China (No. 40671013 and 40871245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Li, X., Hu, Y. et al. Potential Carbon Mineralization of Permafrost Peatlands in Great Hing’an Mountains, China. Wetlands 30, 747–756 (2010). https://doi.org/10.1007/s13157-010-0075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-010-0075-1

Keywords

Navigation