Skip to main content

Advertisement

Log in

Age and depositional environment of carbonate exotics associated with the Disang group of Assam–Arakan Basin, Northeast India: constraints from microfossils and geochemistry

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

In this paper, we present the detailed microfacies study and geochemical characteristics of carbonate exotics (olistoliths) associated with the Eocene Disang group of Assam–Arakan Basin, Northeast India to deduct their relative age, and depositional environment. The studied carbonate rocks contain diverse fauna with the dominance of foraminiferal assemblages (planktonic and benthic). The well-preserved planktonic foraminifera, especially Globotruncana spp. and Heterohelix spp. are recorded in carbonates and age has been assigned as late Cretaceous (Maastrichtian in age). Rare earth element (REE) contents (~ 56 ppm average value) in these carbonates are high compared with the average value of typical marine carbonate (~ 28 ppm). The Post-Archean Australian Shale (PAAS)-normalized REE patterns of these carbonates exhibit seawater-like REE patterns with light rare earth elements (LREE) depletion and relatively heavy rare earth elements (HREE) enrichment with negative Ce anomalies and positive Eu anomalies. The geochemical data along with microfacies suggest that the investigated carbonate rocks might have been formed in low energy environments deposited in neritic to bathyal palaeoenvironment during Campanian–Maastrichtian age. Our study also confirmed that the investigated Disang group carbonates are similar to the adjoining carbonates exposed in the ophiolitic mélange zone of Manipur ophiolites, NE India. It is likely that the carbonate rocks were influenced by diagenetic activities at different tectonic processes during the evolution of MOC and later emplaced with the Disang group flysch-like sediments during subduction and obduction processes of the Indian plate and Myanmar plate collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acharyya SK, Mitra ND, Nandy DR (1986) Regional geology and tectonic frame. In: Geology of Nagaland ophiolite. Memoirs of the Geological Survey of India, vol 119, pp 6–12

  • Anderson JW (1974) Influence of salinity and temperature on the O2 consumption of Neanthes arenaceodentata Moore. Amer Soc Zool 14:1260

    Google Scholar 

  • Armstrong HA, Brasier MD (2005) Microfossil, 2nd edn. Blackwell publishing, p 287

    Google Scholar 

  • Armstrong-Altrin JS, Verma SP, Madhavaraju J, Lee YI, Ramasamy S (2003) Geochemistry of late Miocene Kudankulam limestones, South India. Int Geol Rev 45:16–26

    Article  Google Scholar 

  • Armstrong-Altrin JS, Madhavaraju J, Sial AN, Kasper-Zubillaga JJ, Nagarajan R, Flores-Castro K, Rodrigues JF (2011) Petrography and stable isotope geochemistry of the Cretaceous EI Abra Limestone(Actopan), Mexico: implication on diagenesis. J Geol Soc Ind 77:349–359

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143:245–255

    Article  Google Scholar 

  • Bellanca A, Masetti D, Neri R (1997) Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem Geol 141:141–152

    Article  Google Scholar 

  • Boudagher-Fadel MK (2008) Evolution and geological significance of larger benthic forminifera. In: Wignall PB (ed) Developments in paleontology and stratigraphy, vol 21. Elsevier Publication, p 540

    Google Scholar 

  • Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system. 1 trace element. J Sediment Res 50:1219–1236

    Google Scholar 

  • Brunnschweiler RO (1966) On the geology of Indo-Burma range. Geol Soc Aust 13:137–194

    Article  Google Scholar 

  • Chen X, Wang C, Kuhnt W, Holbourn A, Huang Y, Ma C (2010) Lithofacies, microfacies and depositional environments of Upper Cretaceous Oceanic red beds (Chuangde Formation) in southern Tibet. Sediment Geol 235:100–110

    Article  Google Scholar 

  • Chungkham P, Jafar SA (1998) Late Cretaceous (Santonian-Maastrichtian) integrated coccolith-globotruncanid biostratigraphy of pelagic limestone from the accretionary prism of Manipur, Northeastern India. Micropaleontology 44:68–83

    Article  Google Scholar 

  • Chungkham P, Mishra PK, Sahni A (1992) Late and terminal Cretaceous foraminifera assemblages from Ukhrul mélange zone, Manipur. Curr Sci 62(6):478–481

    Google Scholar 

  • Collison P (1980) Vertical distribution of foraminifera off the coast of Northumberland, England. J Foraminifer Res 10(1):716–719

    Article  Google Scholar 

  • Culver SJ (1987) Foraminifera. In: Broadhead TW (ed) Fossil prokaryotes and protists. Notes for a short course. University of Tennessee, Department of Geological Sciences, Studies in Geology, pp 169–212

    Google Scholar 

  • De Baar HJW, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim Cosmochim Acta 52:1203–1219

    Article  Google Scholar 

  • Devi KR, Duarah BP (2015) Geochemistry of Ukhrul limestone of Assam-Arakan subduction basin, Manipur, Northeast India. J Geol Soc India 85:367–376

    Article  Google Scholar 

  • Devi KR, Duarah BP (2018) Microfacies analysis and depositional environment of Maastrichtian-Eocene limestone of the Ukhrul district, Manipur, Northeast India. J Indian Assoc Sedimentol 35(1):99–106

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, vol 1. Memoir of American Association of Petroleum Geologists, Tulsa, pp 108–121

    Google Scholar 

  • Elderfield H (1988) The oceanic chemistry of the rare-earth elements. Philos Trans Royal Soc London 325:105–126

    Google Scholar 

  • Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Elderfield H, Pagett R (1986) Rare earth elements in icthyoliths: variations with redox conditions and depositional environments. Sci Total Environ 49:175–197

    Article  Google Scholar 

  • Flugel E (1982) Microfacies analysis of limestones. Springer-Verlag, Heidelberg, p 634

    Book  Google Scholar 

  • Flugel E (2010) Microfacies of carbonate rocks, analysis interpretation and application. Springer-Verlag, Berlin, p 662

    Google Scholar 

  • Flugel E, Stanley GD (1984) Reorganisation, development and evolution of post-Permian reef organisms. Amer J Palaeontographica 54:177–186

    Google Scholar 

  • Flugel HW, Wedepohl KH (1967) Die-vertielung des strontiums in oberjurassicchen karbonatgeserien Der Nordlichen Kalkalpen. Contrib Mineral Petrol 14(3):249–299

    Article  Google Scholar 

  • Folk RL (1962) Spectral subdivision of limestone types. In: Ham WE (ed) Classification of carbonate rocks. Memoir of American Association of Petroleum Geologists, Tulsa, pp 62–84

    Google Scholar 

  • Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258:338–353

    Article  Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastren Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155:211–238

    Article  Google Scholar 

  • German CR, Elderfield H (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta 53:2561–2571

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5:823–833

    Article  Google Scholar 

  • German CR, Higgs NC, Thomson J, Mills R, Elderfield H, Blusztajn J, Fleer AP, Bacon AP (1993) A geochemical study of metalliferous sediment from the TAG hydrothermal mound, 26°08ʹN, Mid-Atlantic Ridge. J Geophys Res 98:9683–9692

    Article  Google Scholar 

  • German CR, Hergt J, Palmer MR, Edmond JM (1999) Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chem Geol 155:65–75

    Article  Google Scholar 

  • Haq BU, Boersma A (1998) Introduction to marine micropaleontology. Elsevier, Amsterdam

    Google Scholar 

  • Kato Y, Nakao K, Isozaki Y (2002) Geochemistry of Late Permian Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chem Geol 182:15–34

    Article  Google Scholar 

  • Kemp RA, Trueman CN (2003) Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment. Sediment Geol 155:109–127

    Article  Google Scholar 

  • Komiya T, Hirata T, Kitajima K, Yamamoto S, Shibuya T, Sawaki Y, Ishikawa T, Shu D, Li Y, Han J (2008) Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res 14:159–174

    Article  Google Scholar 

  • Madhavaraju J, Lee YI (2009) Geochemistry of the Dalmiapuram formation of the Uttatur group (Early Cretaceous), Cauvery basin, southeastern India: implications on provenance and paleo-redox conditions. Revista Mexicana De Ciencias Geológicas 26:380–394

    Google Scholar 

  • Madhavaraju J, González-León CM, Lee YI, Armstrong-Altrin JS, Reyes-Campero LM (2010) Geochemistry of the mural formation (Aptian–Albian) of the Bisbee group, Northern Sonora, Mexico. Cretac Res 31:400–414

    Article  Google Scholar 

  • Mathur LP, Evans P (1964) Oil in India. In: International geological congress, 22nd session, pp 1–85

  • Mazumdar A, Tanaka K, Takahashi T, Kawabe I (2003) Characteristics of rare earth element abundance in shallow marine continental platform carbonates of Late Neoproterozoic successions from India. Gechem J 37:277–289

    Article  Google Scholar 

  • Mitra ND, Vidyadharan KT, Gour MP, Singh SK, Mishra UK, Khan IK, Ghosh S (1986) A note on the olistostrome deposits of Manipur. Rec Geol Surv India 114(4):61–76

    Google Scholar 

  • Morkhoven FPCM, van Berggren WA, Edwards AS, Oertli HJ (1986) Cenozoic cosmopolitan deep-water benthic foraminifera. Bulletin des centres de recherches Exploration-production Elf-Aquitaine Mémoire 11:1–421

    Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier Scientific Publ. Co., New York, p 696

    Google Scholar 

  • Murray JWL (1991) Ecology and palaeoecology of benthic foraminifera, vol 397. Longman, Harlow

    Google Scholar 

  • Murray RW, Buchholtz Brink MR, Brink MR, Gerlach DC, Russ GP III, Jones DL (1991) Rare earth, major and trace elements in chert from the Franciscan complex and Monterey group, California: assessing REE sources to fine grained marine sediments. Geochim Cosmochim Acta 55:1875–1895

    Article  Google Scholar 

  • Nagarajan R, Madhavaraju J, Armstrong-Altrin JS, Nagendra R (2011) Geochemistry of Neoproterozoic limestones of the Shahabad formation, Bhima Basin, Karnataka, southern India. Geosci J 15(1):9–25

    Article  Google Scholar 

  • Nath BN, Roelandts I, Sudhakar M, Plueger WL (1992) Rare earth element patterns of the Central Indian Basin sediments related to their lithology. Geophys Res Lett 19:1197–1200

    Article  Google Scholar 

  • Palmer MR (1985) Rare earth elements in foraminifera tests. Earth Planet Sci Lett 73:285–298

    Article  Google Scholar 

  • Pascoe EH (1912) A traverse across the Naga hills of Assam from the Dimapur to the neighbourhood of Saramati peak. Rec Geol Surv India 42(4):261

    Google Scholar 

  • Siby K, Nath BN, Ramaswamy V, Naman D, Gnaneshwar Rao T, Kamesh Raju KA, Selvaraj K, Chen CTA (2008) Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin. Mar Geol 247:178–193

    Article  Google Scholar 

  • Singh AK, Devi LD, Singh NI, Subramanyam KSV, Singh RKB, Satyanarayanan M (2013) Platinum-group elements and gold distributions inperidotites and associated podiform chromitites of the Manipur Ophiolitic Complex Indo-Myanmar Orogenic Belt, Northeast India. Chem Erde 73:147–161

    Article  Google Scholar 

  • Singh AK, Tewari VC, Sial AN, Khanna PP, Singh NI (2015) Rare earth elements and stable isotope geochemistry of carbonates from the mélange zone of Manipur ophiolitic complex, Indo-Myanmar orogenic belt, Northeast India. Carbonate Evaporite. https://doi.org/10.1007/s13146-015-0249-2

    Article  Google Scholar 

  • Singh YR, Singh BP, Thanglemmoi MS, Naorem R (2016) Planktonic and benthic foraminifera of the Ophiolite associated limestones, around Ukhrul area of Manipur India: age and palaeoenvironment. In: Srivastava SK (ed) Recent trends in earth science research with special reference to NE India. Today and Tomorrow’s Printers and Publishers, New Delhi, pp 145–155

    Google Scholar 

  • Tewari VC, Singh AK, Sial AN, Singh NI (2011) Stable isotope geochemistry of carbonate rocks from ophiolitic melange zone in Manipur, Northeast India. J Indian Geol Congr 3(2):17–27

    Google Scholar 

  • Toyoda K, Nakamura Y, Masuda A (1990) Rare earth elements of Pacific pelagic sediments. Geochim Cosmochim Acta 54:1093–1103

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. GSA Bull 72(2):175–192

    Article  Google Scholar 

  • Wallace MW (1990) Origin of dolomitization of the Barbowire, Canning Basin, Western Australia. J Ind Assoc Sedimentologist 37(1):105–122

    Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565

    Article  Google Scholar 

  • Wedepohl KH (1970) Geochemistry data on sedimentary carbonates and carbonate rocks and their facies and petrogenic evaluation. Verh Geol Bundesanst 4:692–705

    Google Scholar 

  • Zeng YF, Xia WJ (1986) Sedimentary petrology. Geological Publishing House, Beijing

    Google Scholar 

  • Zhao YY, Zheng YF, Chen F (2009) Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern. J Chemical Geol 265:345–362

    Article  Google Scholar 

  • Zolnaj S (1979) Carbonate microfossils separation from hard limestone. VII international symposium on Ostracod, Beogradd, pp 246–269

Download references

Acknowledgements

The authors are grateful to the Director, Wadia Institute of Himalayan Geology (WIHG), Dehradun, India for providing geochemical analytical facilities. The authors (YRS) are grateful to the Science and Research Board (SERB), Government of India (Grant No. EEQ/2016/000062) for funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Raghumani Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guruaribam, V., Singh, Y.R. & Singh, A.K. Age and depositional environment of carbonate exotics associated with the Disang group of Assam–Arakan Basin, Northeast India: constraints from microfossils and geochemistry. Carbonates Evaporites 36, 46 (2021). https://doi.org/10.1007/s13146-021-00715-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00715-8

Keywords

Navigation