Skip to main content
Log in

Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The sensitivity of the precipitation responses to greenhouse warming can depend on the present-day climate. In this study, a robust linkage between the present-day precipitation climatology and precipitation change owing to global warming is examined in inter-model space. A model with drier climatology in the present-day simulation tends to simulate an increase in climatological precipitation owing to global warming. Moreover, the horizontal gradient of the present-day precipitation climatology plays an important role in determining the precipitation changes. On the basis of these robust relationships, future precipitation changes are calibrated by removing the impact of the present-day precipitation bias in the climate models. To validate this result, the perfect model approach is adapted, which treats a particular model’s precipitation change as an observed change. The results suggest that the precipitation change pattern can be generally improved by applying the present statistical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. hydrometeorol., 4, 1147–1167.

    Article  Google Scholar 

  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 3518–3543.

    Article  Google Scholar 

  • Bracegirdle, T. J., and D. B. Stephenson, 2012: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J. Climate, 26, 669–678, doi:10.1175/JCLI-D-12-00537.1.

    Article  Google Scholar 

  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich don’t get richer in the tropics. J. Climate, 26, 3803–3822, doi:10.1175/JCLI-D-12-00543.1.

    Article  Google Scholar 

  • Collins, M., R. E. Chandler, P. M. Cox, J. M. Huthnance, J. Rougier, and D. B. Stephenson, 2012: Quantifying future climate change. Nat. Clim. Change, 2, 403–409, doi:10.1038/nclimate1414.

    Article  Google Scholar 

  • Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341–344, doi:10.1038/nature11882.

    Article  Google Scholar 

  • Dufresne, J. L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J. Climate, 21, 5135–5144.

    Article  Google Scholar 

  • Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Nino? Clim. Dynam., 39, 383–398, 10.1007/s00382-011-1157-3.

    Google Scholar 

  • Ham, Y.-G., and J.-S. Kug, 2014: Effects of Pacific Intertropical Convergence Zone precipitation bias on ENSO phase transition. Env. Res. Lett. 9, 064008, doi:10.1088/1748-9326/9/6/064008.

    Article  Google Scholar 

  • Ham, Y.-G., and J.-S. Kug, 2015: Improvement of ENSO simulation based on intermodel diversity. J. Climate, 28, 998–1015, doi:10.1175/JCLI-D-14-00376.1.

    Article  Google Scholar 

  • Ham, Y.-G., and J.-S. Kug, 2016: ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the 20th century. Geophy. Res. Lett., 10.1002/2015GL066864.

    Google Scholar 

  • Hegerl, G. C., and F. W. Zwiers, 2007: Understanding and attributing climate change. Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, 663–745.

    Google Scholar 

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699.

    Article  Google Scholar 

  • Hirota, N., and Y. N. Takayabu, 2012: Inter-model differences of future precipitation changes in CMIP3 and MIROC5 climate models. J. Meteor. Soc. Japan, 90, 307–316, doi:10.2151/jmsj.2012.-A16.

    Article  Google Scholar 

  • Hong, S., I.-S. Kang, I. Choi, and Y.-G. Ham, 2013: Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia-Pac. J. Atmos. Sci, 49, 209–217, doi:10.1007/s13143-013-0022-1.

    Article  Google Scholar 

  • Huang, P., 2014: Regional response of annual-mean tropical rainfall to global warming. Atmospheric Science Letters, 15, 103–109, doi: 10.1002/asl2.475.

    Article  Google Scholar 

  • Huang, P., and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Climate, 28, 4706–4723, doi:10.1175/JCLI-D-14-00833.1.

    Article  Google Scholar 

  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357–361, doi:10.1038/ngeo1792.

    Article  Google Scholar 

  • Hwang, Y. T., and D. M. Frierson, 2013: Link between the doubleintertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci., 110, 4935–4940.

    Article  Google Scholar 

  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. Frierson, and I. S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 5506–5520.

    Article  Google Scholar 

  • Kitoh, A., T. Motoi, and S. Murakami, 2007: El Nino-Southern oscillation simulation at 6000 years before present with the MRI-CGCM2. 3: Effect of flux adjustment. J. Climate, 20, 2484–2499.

    Google Scholar 

  • Lee, J. Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Clim. Dynam., 42, 101–119, doi:10.1007/s00382-012-1564-0.

    Article  Google Scholar 

  • Li, X., S. P. Xie, S. T. Gille, and C. Yoo, 2015: Atlantic-induced pantropical climate change over the past three decades. Nat. Clim. Change, doi:10.1038/nclimate2840.

    Google Scholar 

  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525.

    Article  Google Scholar 

  • Liu, C., and R. P. Allan, 2013: Observed and simulated precipitation responses in wet and dry regions 1850-2100. Environ. Res. Lett., 8, 034002, doi:10.1088/1748-9326/8/3/034002.

    Article  Google Scholar 

  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F. F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change, 4, 888–892, doi:10.1038/nclimate2330.

    Article  Google Scholar 

  • Mitchell, J. F., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293–322.

    Article  Google Scholar 

  • Sherwood, S. C., S. Bony, and J. L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 37–42, doi:10.1038/nature12829.

    Article  Google Scholar 

  • Tian, B., 2015: Spread of model climate sensitivity linked to double-Intertropical Convergence Zone bias. Geophys. Res. Lett., 42, 4133–4141, doi:10.1002/2015GL064119.

    Article  Google Scholar 

  • Turner, A. G., and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Clim. Change, 2, 587–595, doi:10.1038/nclimate1495.

    Article  Google Scholar 

  • Watanabe, M., Chikira, M., Imada, Y., and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543–562, doi:10.1175/2010JCLI3878.1.

    Article  Google Scholar 

  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986, doi:10.1175/2009jcli3329.1.

    Article  Google Scholar 

  • Zhang, F., Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Kug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ham, YG., Kug, JS. Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models. Asia-Pacific J Atmos Sci 52, 459–466 (2016). https://doi.org/10.1007/s13143-016-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0030-z

Keywords

Navigation