Skip to main content
Log in

Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543–556.

    Article  Google Scholar 

  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342.

    Article  Google Scholar 

  • Benmoshe, N., and A. P. Khain, 2014: The effects of turbulence on the microphysics of mixed-phase deep convective clouds investigated with a 2-D cloud model with spectral bin microphysics. J. Geophys. Res-Atmos., 119, 207–221.

    Article  Google Scholar 

  • Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802–822.

    Article  Google Scholar 

  • Boccippio, D. J., and S. J. Goodman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteorol., 39, 2231–2248.

    Article  Google Scholar 

  • Boccippio, D. J., C. Wong, E. R. Williams, R. Boldi, H. Christian, and S. J. Goodman, 1998: Global validation of single station Schumann resonance lightning location. J. Atmos. Sol-Terr. Phy., 60, 701–722.

    Article  Google Scholar 

  • Breon, F. M., D. Tanre, and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834–838.

    Article  Google Scholar 

  • Chaudhuri, S., and A. Middey, 2013: Effect of meteorological parameters and environmental pollution on thunderstorm and lightning activity over an urban metropolis of India. Urban Clim., 3, 67–75.

    Article  Google Scholar 

  • Christian, H. J., and Coauthors, 1999: Global frequency and distribution of lightning as observed by the Optical Transient Detector (OTD). Proc. 11th Int. Conf. Atmos. Electricity, NASA, Guntersville, 726–729.

    Google Scholar 

  • Chronis, T. G., S. J. Goodman, D. Cecil, D. Buechler, F.J. Robertson, J. Pittman, 2008: Global lightning activity from the ENSO perspective. Geophys. Res. Lett., 35, L19804.

    Article  Google Scholar 

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteorol. Soc., 137, 1–28.

    Article  Google Scholar 

  • Feingold, G., W. Eberhard, D. Veron, and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, doi:10.1029/2002GL016633,2003.

    Google Scholar 

  • Fullekrug, M., C. Price, Y. Yair, and E. R. Williams, 2002: Intense oceanic lightning. Ann. Geophys., 20, 133–137.

    Article  Google Scholar 

  • Gauthier, M. L., W. A. Petersen, L. D. Carey, and H. J. Christian Jr., 2006: Relationship between cloud-to-ground lightning and precipitation ice mass: a radar study over Houston. Geophys. Res. Lett., 33, L20803.

    Article  Google Scholar 

  • Hidayat, S., and M. Ishii, 1998: Spatial and temporal distribution of lightning activity around Java. J. Geophys. Res., 103(D12), 14001–14009.

    Article  Google Scholar 

  • Kandalgaonkar, S. S., J. R. Kulkarni, M. I. R. Tinmaker, and M. K. Kulkarni, 2010: Land-ocean contrasts in lightning activity over the Indian region. Int. J. Climatol., 30, 137–145.

    Google Scholar 

  • Kar, S. K., and Y. A. Liou, 2014: Analysis of cloud-to-ground lightning and its relation with surface pollutants over Taipei, Taiwan. Ann. Geophys., 32, 1–8.

    Article  Google Scholar 

  • Kar, S. K., Y. A. Liou, and K. J. Ha, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res., 92, 80–87.

    Article  Google Scholar 

  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    Article  Google Scholar 

  • Lee, H., J. J. Baik, and J. Y. Han, 2014: Effects of turbulence on mixedphase deep convective clouds under different basic-state winds and aerosol concentrations. J. Geophys. Res-Atmos., 119, 13506–13525.

    Article  Google Scholar 

  • Lelieveld, J., and Coauthors, 2001: The Indian Ocean experiment: widespread air pollution from South and South-East Asia. Science, 291, 1031–1036.

    Article  Google Scholar 

  • Liu, D. X., X. S. Qie, Y. J. Xiong, and G. L. Feng, 2011: Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci., 28, 866–878.

    Article  Google Scholar 

  • Liu, Z., D. Ostrenga, W. Teng, and S. Kempler, 2012: Tropical Precipitation Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Am. Meteorol. Soc., 93, 1317–1325.

    Article  Google Scholar 

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–251.

    Article  Google Scholar 

  • Massie, S. T., O. Torres, and S. J. Smith, 2004: Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. J. Geophys. Res., 109, D18211.

    Article  Google Scholar 

  • Middey, A., and S. Chaudhuri, 2013: The reciprocal relation between lightning and pollution and their impact over Kolkata, India. Environ. Sci. Pollut. Res., 20, 3133–3139.

    Article  Google Scholar 

  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: December 1977 to August 1978. Mon. Wea. Rev., 114, 2640–2653.

    Article  Google Scholar 

  • Orville, R. E., G. Huffines, J. Nielsen-Gammon, R. Zhang, B. Ely, S. M. Steiger, S. Phillips, S. Allen, W. Read, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 2597–2600.

    Article  Google Scholar 

  • Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103, 14025–14040.

    Article  Google Scholar 

  • Pinto, Jr. O., I. R. C. A. Pinto, and K. P. Naccarato, 2007: Maximum cloud to ground lightning flash densities observed by lightning location systems in the tropical region: A Review. Geophys. Res. Lett., 84, 189–200.

    Google Scholar 

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menze, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: algorithms and examplesfrom terra. IEEE T Geosci Remote, 41, 459–473.

    Article  Google Scholar 

  • Qie, X. S., C. M. Guo, M. H. Yan, and G. S. Zhang, 1993: Lightning data and study of thunderstorm nowcasting. Acta Meteorol. Sin., 7, 244–256.

    Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Atmosphere, climate, and the hydrological cycle. Science, 294, 2119–2124.

    Article  Google Scholar 

  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

    Article  Google Scholar 

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 304 pp.

    Google Scholar 

  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: a comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744–755.

    Article  Google Scholar 

  • Singh, D., A. K. Singh, R. P. Patel, R. P. Singh, B. Venadhari, and M. Mukherjee, 2008: Thunderstorm, lightning, sprites and magnetospheric whistler mode radio wave. Surv. Geophys., 29, 499–551.

    Article  Google Scholar 

  • Snee, R. D., and C. G. Pfeifer, 2006: Histograms. Encyclopedia. Stat. Sci., doi:10.1002/0471667196.ess0952.pub2.

    Google Scholar 

  • Stallins, J. A., M. L. Bentley, and L. S. Rose, 2006: Cloud-to-ground patterns for Atlanta, Georgia (USA) from 1992 to 2003. Clim. Res., 30, 99–112.

    Article  Google Scholar 

  • Tang, J., P. Wang, L. J. Mickley, X. Xia, H. Hong Liao, X. Yue, L. Sun, J. Xia, 2014: Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data. Atmos. Environ., 84, 244–253.

    Article  Google Scholar 

  • Turman, B. N., and B. C. Edgar, 1982: Global lightning distributions at dawn and dusk. J. Geophys. Res., 87, 1191–1206.

    Article  Google Scholar 

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152.

    Article  Google Scholar 

  • Ushio, T., S. J. Heckman, D. J. Boccippio, H. J. Christian, Z. I. Kawasaki, 2001: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res., 106, 24089–24095.

    Article  Google Scholar 

  • van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteorol. Climatol., 46, 828–850.

    Article  Google Scholar 

  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiativeconvective equilibrium. J. Atmos. Sci., 68, 699–718.

    Article  Google Scholar 

  • van den Heever, S. C., G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida convection. Part I: mesoscale simulations. J. Atmos. Sci. 63, 1752–1775.

    Article  Google Scholar 

  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200.

    Article  Google Scholar 

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000: supercell observed during STEPS. Part II: lightning and charge structure. J. Atmos. Sci., 62, 4151–4177.

    Article  Google Scholar 

  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. International Geophysics, Academic Press, 704 pp.

    Google Scholar 

  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res, 94, 13151–13167.

    Article  Google Scholar 

  • Williams, E. R., and S. Stanfill, 2002: The physical origin of the land-ocean contrast in lightning activity. C. R. Phys., 3, 1277–1292.

    Article  Google Scholar 

  • Williams, E. R., T. Chan, and D. Boccippio, 2004: Islands as miniature continents: another look at the land-ocean contrast. J. Geophys. Res., 109, D16210, doi:10.1029/2003JD003833.

    Article  Google Scholar 

  • Williams, E. R., K. Rothkin, D. Stevenson, and D. Boccippio, 2000: Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. J. Appl. Met., 39, 2223–2230.

    Article  Google Scholar 

  • Williams, E. R., D. Rosenfeld, N. Madden, C. Labrada, J. Gerlach, and L. Atkinson, 1999: The role of boundary layer aerosol in the vertical development of precipitation and electrification: another look at the contrast between lightning over land and over ocean. Preprints, 11th Int. Conf. Atmos. Electricity, Guntersville, AL, 754–757.

    Google Scholar 

  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. O. Renno, S. A. Rutledge, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 1386–1395.

    Article  Google Scholar 

  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: implications for cloud electrification. J. Geophys. Res., 107, D20, doi:10.1029/2001JD000380.

    Google Scholar 

  • Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu, 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701.

    Google Scholar 

  • Ziegler, C. L., D. R. MacGorman, P. S. Ray, and J. E. Dye, 1991: A model evaluation of non inductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12833–12855.

    Article  Google Scholar 

  • Zipser, E., and K. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 1751–1759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, J., Chaudhuri, S., Chowdhury, A.R. et al. Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment. Asia-Pacific J Atmos Sci 52, 251–261 (2016). https://doi.org/10.1007/s13143-015-0087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-015-0087-0

Key words

Navigation