Skip to main content
Log in

Background error statistics for aerosol variables from WRF/Chem predictions in Southern California

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Background error covariance (BEC) is crucial in data assimilation. This paper addresses the multivariate BEC associated with black carbon, organic carbon, nitrates, sulfates, and other constituents of aerosol species. These aerosol species are modeled and predicted using the Model for Simulating Aerosol Interactions and Chemistry scheme (MOSAIC) in the Weather Research and Forecasting/Chemistry (WRF/Chem) model at a resolution of 4 km in Southern California. The BEC is estimated from the differences between the 36-hour and 12-hour forecasts using the NMC method. The results indicated that the maximum background error standard deviation is associated with nitrate and is larger than that of black carbon, organic carbon, and sulfate. The horizontal and vertical scale of the correlation of nitrate is much smaller than that of other species. A significant cross-correlation is found between the species of black carbon and organic carbon. The cross-correlations between nitrate and other variables are relatively smaller and exhibit a relatively smaller length scale. Single observation data assimilation experiments are performed to illustrate the effect of the BEC on analysis increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barth, M. C., and A. T. Church, 1999: Regional and global distributions and lifetimes of sulfate aerosols from Mexico City and southeast China. J. Geophys. Res., 104, D23, 30231–30239.

    Article  Google Scholar 

  • Benedetti, A., and M. Fisher, 2007: Background error statistics for aerosols. Quart. J. Roy. Meteor. Soc., 133, 391–405.

    Article  Google Scholar 

  • —, and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2.Data assimilation. J. Geophys. Res., 114, D13205.

    Article  Google Scholar 

  • Bannister, R. N., 2008a: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances. Quart. J. Roy. Meteor. Soc., 134, 1951–1970.

    Article  Google Scholar 

  • —, 2008b: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics. Quart. J. Roy. Meteor. Soc., 134, 1971–1996.

    Article  Google Scholar 

  • Begum, B. A., A. Hossain, N. Nahar, A. Markwitz, and P. K. Hopke, 2012: Organic and Black Carbon in PM2.5 at an Urban Site at Dhaka, Bangladesh. Aerosol Air Qual. Res., 12, 1062–1072.

    Google Scholar 

  • Chen, D., Z. Liu, C. S. Schwartz, H.-C. Lin, J. D. Cetola, Y. Gu, and L. Xue, 2014: The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States. Geosci. Model Dev., 7, 2709–2715, doi: 10.5194/gmd-7-2709-2014.

    Article  Google Scholar 

  • —, and Coauthors, 2013a: WRF-Chem simulation of NOx and O3 in the L.A. basin during CalNex-2010. Atmos. Environ., 81, 421–432.

    Article  Google Scholar 

  • Chen, Y., S. Rizvi, X. Huang, J. Min, and X. Zhang, 2013b: Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and Arctic regions. Meteor. Atmos. Phys., 121, 79–98.

    Article  Google Scholar 

  • Cohn, S. E., 1997: Estimation theory for data assimilation problems: Basic conceptual framework and some open questions. J. Meteor. Soc. Japan., 75, 257–288.

    Google Scholar 

  • Daley, R., 1991: Atmospheric Data Analysis (Cambridge Atmospheric and Space Science Series). Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Derber, J., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus, 51, 195–221.

    Article  Google Scholar 

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.

    Article  Google Scholar 

  • Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res., 111, D21305.

    Article  Google Scholar 

  • Fu, W., G. Zhong, and H. Wang, 2004: Ocean data assimilation with background error covariance derived from OGCM outputs. Adv. Atmos. Sci., 21, 181–192.

    Article  Google Scholar 

  • Gaspari, G., and S. E. Cohn, 1999: Construction of Correlation Functions in Two and Three Dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757.

    Article  Google Scholar 

  • Jacobson, M. Z., 2001: GATOR-GCMM: A global through urban scale air pollution and weather forecast model. 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res., 106(D6), 5385–5402.

    Google Scholar 

  • Kahnert, M., 2008: Variational data analysis of aerosol species in a regional CTM: Background error covariance constraint and aerosol optical observation operators. Tellus, 60, 753–770.

    Article  Google Scholar 

  • Kalnay, E, 2003: Atmospheric modeling, data assimilation and predictability. Cambridge Univ. Press, New York, 341 pp.

    Google Scholar 

  • Li, X., J. Cao, J. Chow, Y. Han, S. Lee, and J. Watson, 2008a: Chemical characteristics of carbonaceous aerosols during dust storms over Xi’an in China. Adv. Atmos. Sci., 30, 1070–1084.

    Google Scholar 

  • Li, Z., Y. Chao, J. C. McWilliams, and K. Ide, 2008b: A three-dimensional variational data assimilation scheme for the Regional Ocean Modeling System. J. Atmos. Ocean, 25, 2074–2090.

    Article  Google Scholar 

  • —, Z. Zang, Q. B. Li, Y. Chao, D. Chen, Z. Ye, Y. Liu, and K. N. Liou, 2013: A three dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction. Atmos. Chem. Phys., 13, 4265–4278.

    Article  Google Scholar 

  • Liu, J., B. Wang, and S. Wang, 2010: The structure of background-error covariance in a four-dimensional variational data assimilation system: single-point experiment. Adv. Atmos. Sci., 27, 1303–1310.

    Article  Google Scholar 

  • Liu, Z, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, 2011: Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia. J. Geophys. Res., 116, D23206.

    Google Scholar 

  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87,343–360.

    Article  Google Scholar 

  • Niu, T., S. Gong, G. Zhu, H. Liu, X. Hu, C. Zhou, and Y. Wang, 2008: Data assimilation of dust aerosol observations for CUACE/Dust forecasting system. Atmos. Chem. Phys., 8, 3473–3482.

    Article  Google Scholar 

  • Pagowski, M., G. A. Grell, S. A. McKeen, S. E. Peckham, and D. Devenyi, 2010: Three-dimensional variational data assimilation of ozone and fine particulate matter observations: some results using the Weather Research and Forecasting-Chemistry model and Grid-point Statistical Interpolation. Quart. J. Roy. Meteor. Soc., 136, 2013–2024.

    Article  Google Scholar 

  • Parrish, D. F., and J. C. Derber, 1992: The national meteorological center spectral statistical interpolation analysis. Mon. Wea. Rev., 120, 1747–1763.

    Article  Google Scholar 

  • Saide, P. E., G. R. Carmichael, C. S. Schwartz, H. C. Lin, A. M. da Silva, and E. Hyer, 2013: Aerosol optical depth assimilation for a sizeresolved sectional model: impacts of observationally constrained, multiwavelength and fine mode retrievals on regional scale analyses and forecasts. Atmos. Chem. Phys., 13, 10425–10444.

    Article  Google Scholar 

  • Schwartz, C. S., Z. Liu, H.-C. Lin, and S. A. McKeen, 2012: Simultaneous three-dimensional variational assimilation of surface fine particulate matter and MODIS aerosol optical depth. J. Geophys. Res., 117, D13202.

    Article  Google Scholar 

  • Singh, K., M. Jardak, A. Sandu, K. Bowman, M. Lee, and D. Jones, 2011: Construction of non-diagonal background error covariance matrices for global chemical data assimilation. Geosci. Model. Dev., 4, 299–316.

    Article  Google Scholar 

  • Salako, G. O., and Coauthors, 2012: Exploring the variation between EC and BC in a variety of locations. Aerosol Air Qual. Res., 12, 1–7.

    Google Scholar 

  • Tao, J., T. Cheng, R. Zhang, J. Cao, L. Zhu, and Q. Wang, 2013: Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China. Adv. Atmos. Sci., 30, 1070–1084.

    Article  Google Scholar 

  • Wang, B., J. Liu, S. Wang, W. Cheng, J. Liu, C. Liu, Q. Xiao, and Y. H. Kuo, 2010: An Economical Approach to Four-dimensional Variational Data Assimilation. Adv. Atmos. Sci., 27, 715–727.

    Article  Google Scholar 

  • Wang, Y., K. N. Sartelet, M. Bocquet, and P. Chazette, 2013: Assimilation of ground versus lidar observations for PM10 forecasting. Atmos. Chem. Phys., 13, 269–283.

    Article  Google Scholar 

  • Xu, Q., S. Liu, and M. Xue, 2006: Background error covariance functions for vector wind analyses using Doppler-radar radial-velocity observations. Quart. J. Roy. Meteor. Soc., 132, 2887–2904.

    Article  Google Scholar 

  • Yttri, K. E., and Coauthors, 2007: Elemental and organic carbon in PM10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP. Atmos. Chem. Phys., 7, 5711–5725.

    Article  Google Scholar 

  • Zhang, Y., 2008: Online-coupled meteorology and chemistry models: history, current status, and outlook. Atmos. Chem. Phys., 8, 2895–2932

    Article  Google Scholar 

  • Zhu, J., and C. Yan, 2006: Nonlinear balance constraints in 3DVAR data assimilation. Sci. China Ser. D, 49, 331–336.

    Article  Google Scholar 

  • —, F. Zheng, and X. Li, 2011: A new localization implementation scheme for ensemble data assimilation of non-local observations. Tellus, 63, 244–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengliang Zang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Z., Hao, Z., Pan, X. et al. Background error statistics for aerosol variables from WRF/Chem predictions in Southern California. Asia-Pacific J Atmos Sci 51, 123–135 (2015). https://doi.org/10.1007/s13143-015-0063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-015-0063-8

Key words

Navigation