Skip to main content
Log in

Comparison of tropical and midlatitude thunderstorm characteristics anchored in thermodynamic and dynamic aspects

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Thunderstorms prevailing over tropics and midlatitudes depict dissimilar features relating to the thermodynamic and dynamic aspects. The identification of the physical characteristics of the tropical and midlatitude thunderstorms is the main objective of the present study. The stations Kolkata (22.6°N, 88.4°E) and Denver (39.47°N, 104.32°W) are selected from the tropics and midlatitudes for the comparative analyses. The study reveals that the average storm relative helicity (SRH) and the lapse rate between 700 and 500 hPa level is much higher over Denver compared to Kolkata during thunderstorm days. The study further reveals that the surface to mid troposphere (upto 500 hPa) become drier (∼2 times) over Denver than Kolkata prior to the occurrence of thunderstorms while the upper tropospheric (300–100 hPa) humidity remains comparable for both the locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannon, P. R., 1983: Quasi-geostrophic frontogenesis over topography. J. Atmos. Sci., 40, 2266–2277.

    Article  Google Scholar 

  • Bartels, D. L., J. M. Brown, and E. I. Tollerud, 1997: Structure of a midtropospheric vortex induced by a mesoscale convective system. Mon. Wea. Rev., 125, 193–211.

    Article  Google Scholar 

  • Beyrich, F., D. Kalass, and U. Weisensee, 1997: Influence of the nocturnal low-level-jet on the vertical and mesoscale structure of the stable boundary layer as revealed from doppler-sodar-observations. Acoustic Remote Sensing Applications, Lecture Notes in Earth Sciences. 68, 236–246.

    Article  Google Scholar 

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283–290.

    Google Scholar 

  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 73–94.

    Article  Google Scholar 

  • Caplan, S. J., A. J. Bedard, and M. T. Decker, 1990: The 700–500 mb lapse rate as an index of microburst probability: An application for thermodynamic profilers. J. Appl. Meteorol., 29, 680–687.

    Article  Google Scholar 

  • Chatterjee, P., D. Pradhan, and U. K. De, 2008: Simulation of local severe storm by mesoscale model MM5. Indian J. Radio & Space Physics, 37, 419–433.

    Google Scholar 

  • Chaudhuri, S., 2006: Predictability of chaos inherent in the occurrence of severe thunderstorms. Adv. Complex Syst., 9, 1–9.

    Article  Google Scholar 

  • ____, 2007: Chaotic graph theory approach for identification of convective available potential energy (CAPE) patterns required for the genesis of severe thunderstorm. Adv. Complex Syst., 10, 413–422.

    Article  Google Scholar 

  • ____, 2008a: Identification of the level of downdraft formation during severe thunderstorms: a frequency domain analysis. Meteor. Atmos. Phys. 102, 123–129.

    Article  Google Scholar 

  • ____, 2008b: Preferred type of cloud in the genesis of severe thunderstorms-A soft computing approach. Atmos. Res., 88, 149–156.

    Article  Google Scholar 

  • ____, and A. Middey, 2009: Applicability of bipartite graph model for thunderstroms forecast over Kolkata. Adv. Meteor., 2009, 1–12.

    Google Scholar 

  • ____, 2010a: Convective energies in forecasting severe thunderstorms with one hidden layer neural net and variable learning rate back propagation algorithm. Asia — Pacific J. Atmos. Sci, 46(2), 173–183.

    Google Scholar 

  • ____, 2010b: Predictability of severe thunderstorms with fractal dimension approach. Asian J. Water, air & Environ. Pollut., 7(4), 81–87.

    Google Scholar 

  • ____, and A. Middey, 2011: Nowcasting thunderstorms with graph spectral distance and entropy estimation. Meteor. Appl. 18, 238–249.

    Article  Google Scholar 

  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 114, 1112–1128.

    Article  Google Scholar 

  • Dauglas, C. K. M., 1947: Cold pools. Meteor. Mag., 76, 225–231.

    Google Scholar 

  • Defant, F., 1951: Local winds. Compendium of Meteorology, Amer. Meteoro. Soc., Boston, M. A, 655–672.

    Google Scholar 

  • Desai, B. N, and Y. P. Rao, 1954: On the cold pool and their role in the development of nor “westers over West Bengal and Eastern Pakistan. Indian J. Meteor. Geophys., 5, 243.

    Google Scholar 

  • Fujita, T. T., 1971: A proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Res. Paper 91, Dept. of Geophysical Sciences, University of Chicago, 42 pp.

    Google Scholar 

  • Ghosh, S., P. K. Sen, and U. K. De, 1999: Identification of significant parameters for the prediction of pre-monsoon thunderstorms at Calcutta. Int. J. Climatol. 19, 673–681.

    Article  Google Scholar 

  • Grünwald, S., and H. E. Brooks, 2011: Relationship between sounding derived parameters and the strength of tornadoes in Europe and the USA from reanalysis data. Atmos. Res. 100, 479–488.

    Article  Google Scholar 

  • India Meteorological Department (IMD), 1941: Nor’westers of Bengal, Tech. Note No. 10.

    Google Scholar 

  • ____, 1944: Nor’westers of Bengal, Technical Note, No 10.

    Google Scholar 

  • Kerr, B. W., and G. L. Darkow, 1996: Storm-relative winds and helicity in the tornadic thunderstorm environment. Wea. Forecasting, 11, 489–505.

    Article  Google Scholar 

  • Koteswaram, P., and V. Srinivasan, 1958: Thunderstorm over Gangetic West Bengal in the pre-monsoon season and the synoptic factors favourable for their formation. Indian J. Meteor. Geophys., 9, 301.

    Google Scholar 

  • Latha, R., and B. S. Murthy, 2011: Boundary layer signatures of consecutive thunderstorms as observed by Doppler sodar over western India. Atmos. Res., 99, 230–240.

    Article  Google Scholar 

  • Lin, H., P. K. Wang, and R. E. Schlesinger, 2005: Three-dimensional nonhydrostatic simulations of summer thunderstorms in the humid subtropics versus High Plains. Atmos. Res., 78, 103–145.

    Article  Google Scholar 

  • Litta, A. J., and U. C. Mohanty, 2008: Simulation of a severe thunderstorm event during the field experiment of STORM programme 2006, using WRF-NMM model, Current science, 95(2), 204–215.

    Google Scholar 

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.

    Article  Google Scholar 

  • Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmos. Res., 100, 457–478.

    Article  Google Scholar 

  • McClain, E. P., 1960: Some effects of the Western Cordillera of North America on cyclonic activity. J. Meteor., 17, 104–115.

    Article  Google Scholar 

  • Middey, A., S., and Chaudhuri, 2012: The reciprocal relation between lightning and pollution and their impact over Kolkata, India. Environ. Sci. Pollut. Res., Online First, doi 10.1007/s11356-012-1219-z.

    Google Scholar 

  • Mukhopadhyay, P., H. A. K. Singh, and M. Mahakur. 2009: The interaction of large scale and mesoscale environment leading to formation of intense thunderstorms over Kolkata. Part I: Doppler radar and satellite observations. J. Earth Sys. Science, 118(5), 441–466.

    Article  Google Scholar 

  • Mull, S., and Y. P. Rao, 1950: On the origin of down draughts in a thunderstorm. Indian J. Meteor. Geophys. 1, 171.

    Google Scholar 

  • Ramaswamy, C., 1956: On the sub-tripical jet stream and its role in the development of large scale convection. Tellus, 88(1), 26.

    Article  Google Scholar 

  • Reymond, D. J., and H. Jiang, 1990: A theory for long lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077.

    Article  Google Scholar 

  • Romero, R., M. Gayà, and C. A. Doswell III, 2007: European climatology of severe convective storm environmental parameters: A test for significant tornado. Atmos. Res., 83, 389–404.

    Article  Google Scholar 

  • Roy, A. K., 1965: Origin of Nor’westers. Nature, 124, 481.

    Article  Google Scholar 

  • Schultz, P., 1989: Relationships of several stability indices to convective weather events in Northeast Colorado. Wea. Forecasting. 4, 73–80.

    Article  Google Scholar 

  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 1317–1340.

    Article  Google Scholar 

  • Stensrud, D. J., 2001: Using short-range ensemble forecasts for predicting severe weather events. Atmos. Res., 56, 3–17.

    Article  Google Scholar 

  • Stith, J. L., A. H. Julie, H. Andrew, and A. G. Cedric, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteorol., 43, 779–794.

    Article  Google Scholar 

  • ____, J. Haggerty, C. Grainger, and A. Detwiler, 2006: A comparison of the microphysical and kinematic characteristics of mid-latitude and tropical convective updrafts and downdrafts. Atmos. Res., 82, 350–366.

    Article  Google Scholar 

  • Szoke, E. J., M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790–808.

    Article  Google Scholar 

  • Tosi, E., M. Fantimi, and A. Trevisan, 1983: Numerical experiments on orographis cyclogenesis: Relationship between the development of the lee cyclone and the basic flow characteristics. Mon. Wea. Rev., 111, 799–814.

    Article  Google Scholar 

  • Wakimoto, R. M. 1986: Clear-air mesocyclone during the JAWS project. Mon. Wea. Rev., 114, 736–744.

    Article  Google Scholar 

  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteorol., 36, 1363–1376.

    Article  Google Scholar 

  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113–131.

    Article  Google Scholar 

  • Wissmeier, U., and R. Goler, 2009: A comparison of tropical and midlatitude thunderstorm evolution in response to wind shear. J. Atmos. Sci., 66, 2385–2401.

    Article  Google Scholar 

  • Zipser, E. J., and J. H. Golden, 1979: A summertime tornado outbreak in Colorado: Mesoscale environment and structural features. Mon. Wea. Rev., 107, 1328–1342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, S., Middey, A. Comparison of tropical and midlatitude thunderstorm characteristics anchored in thermodynamic and dynamic aspects. Asia-Pacific J Atmos Sci 50, 179–189 (2014). https://doi.org/10.1007/s13143-014-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0006-9

Key words

Navigation