Skip to main content
Log in

Spectral analysis method for a limited area using the eigenmodes of the spherical Laplacian operator

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We propose a spectral analysis method using the eigenmodes of the spherical Laplacian operator on the limited area domain. Two numerical methods are considered for the horizontal discretization: One uses the half-ranged Fourier series for both longitudinal and latitudinal directions, and the other uses the Fourier finite-element method with piecewise linear basis functions for the latitudinal direction. The field variable for the two numerical algorithms is represented as linear combinations of the eigenvectors of the Laplacian operator on the limited area domain; we define the one-dimensional spectrum with the eigenvector coefficients as a function of the indices equivalent to the total wavenumbers of the Laplacian operator on the global domain. The spatial robustness of this method was verified through the self-consistency test comparing the spectra of isotropic Gaussian bells on the sphere. We used the method in the kinetic energy spectral analysis for a limited area with global atmospheric data, and compared the results for different seasons. The kinetic energy spectra represented the well-known characteristics with scale and different powers with season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes, S. L., 1986: On the accuracy of omega diagnostic computations. Mon. Wea. Rev., 114, 1664–1680.

    Article  Google Scholar 

  • Bierdel, L., P. Friederichs, and S. Bentzien, 2012: Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMODE. Meteor. Z., 21,3, 245–258.

    Article  Google Scholar 

  • Cheong, H.-B., 2000: Double Fourier series on a Sphere: Applications to Elliptic and Vorticity Equations. J. Comput. Phys., 157, 327–349.

    Article  Google Scholar 

  • _____, and I.-H. Kwon, 2005: A dynamical core with even-resolution grid system on the sphere. Proceeding of Spring meeting of Korean Meteorological Society, 474–475.

    Google Scholar 

  • _____, and J.-R. Park, 2012: Application of Fourier- and finite elementmethod to elliptic equations on the spherical surface. 2012 American Geophysical Union Fall Meeting.

    Google Scholar 

  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral Decomposition of Twodimensional Atmospheric Fields on Limited-Area Domains Using the Discrete Cosine Transform (DCT). Mon. Wea. Rev., 130, 1812–1829.

    Article  Google Scholar 

  • Dubos, T., 2009: A conservative Fourier-finite-element method for solving partial differential equations on the whole sphere. Quart. J. Roy. Meteor. Soc., 135, 1877–1889.

    Article  Google Scholar 

  • Errico, R. M., 1985: Spectra Computed from a Limited Area Grid. Mon. Wea. Rev., 113, 1554–1562.

    Article  Google Scholar 

  • _____, 1987: A comparison between two limited-area spectral analysis schemes. Mon. Wea. Rev., 115, 2856–2861.

    Article  Google Scholar 

  • Frehlich, R., and R. Sharman, 2008: The use of structure functions and spectra from numerical model output to determine effective model resolution. Mon. Wea. Rev., 136, 1537–1553.

    Article  Google Scholar 

  • Haltiner, G. J., and R. T. Williams, 1980: Numerical prediction and dynamic meteorology. 2nd ed. Wiley, 182 pp.

    Google Scholar 

  • Koshyk, J. N., B. A. Boville, K. Hamilton, E. Manzini, and K. Shibata, 1999: The kinetic energy spectrum of horizontal motions in middleatmosphere models. J. Geophys. Res., 104, 27177–27190.

    Article  Google Scholar 

  • Langhans, W., J. Schmidli, and C. Schar, 2012: Mesoscale impacts of explicit numerical diffusion in a convection-permitting model. Mon. Wea. Rev., 140, 226–244.

    Article  Google Scholar 

  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950–960.

    Article  Google Scholar 

  • Park, J.-R., H.-B. Cheong, and H.-G. Kang, 2011: High-order spectral filter for the spherical-surface limited area. Mon. Wea. Rev., 139, 1256–1278.

    Article  Google Scholar 

  • Skamarock, W. C., 2004: Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra. Mon. Wea. Rev., 132, 3019–3032.

    Article  Google Scholar 

  • Stamus, P. A., F. H. Carr, and D. P. Baumhefner, 1992: Application of a scale-separation verification technique to regional forecast models. Mon. Wea. Rev., 120, 149–163.

    Article  Google Scholar 

  • Waite, M. L., and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883–901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeong-Bin Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JR., Cheong, HB. Spectral analysis method for a limited area using the eigenmodes of the spherical Laplacian operator. Asia-Pacific J Atmos Sci 49, 665–674 (2013). https://doi.org/10.1007/s13143-013-0059-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0059-1

Key words

Navigation