Skip to main content
Log in

Impact of lateral boundary conditions on precipitation and temperature extremes over South Korea in the CORDEX regional climate simulation using RegCM4

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the impact of lateral boundary conditions (LBCs) on the simulation skills of the climate model RegCM4 for extreme climate events (ECEs) over South Korea are investigated using two sets of 20-yr (1989–2008) integration with two LBCs (ERA and R-2). The ECEs were defined by a percentile method and an absolute threshold method. In general, RegCM4 successfully reproduces the spatial distribution and the inter-annual variability (R > 0.76) of ECEs indices (precipitation and temperature extreme 5%) irrespective of LBCs. When driven by ERA, RegCM4 shows better simulation skill for ECEs (PR5%, TX5%, hot days, tropical nights, and wet days) than when driven by R-2. The ERA run simulates more than +7 mm day−1 and +1.1°C for PR5% and TX5% than those by the R-2 run, respectively. Although RegCM4’s simulation skills for the ECEs defined by absolute thresholds are significantly different according to LBCs, RegCM4 captured the interannual variability of frost days, hot days, tropical nights, and dry days well. However, the numbers of hot days and dry days are strongly underestimated and overestimated, respectively, compared to the observations, irrespective of LBCs. The large differences in the simulation skill of RegCM4 for ECEs over South Korea between two simulations can be caused by the differences between two LBCs, ERA and R-2. For the mean climate state, ERA simulates more humidity and warmer temperatures than the R-2, especially in the low-to-mid troposphere, resulting in a warmer and more humid troposphere especially at the central region of the model domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cha, D. H., and D. K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the Western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, doi:10.1029/2008JD011176.

    Google Scholar 

  • Chen, L., OM. Johannessen, H. Wang, and A. Ohmura, 2011: Accumulation over the greenland ice sheet as represented in reanalysis data. Adv. Atmos. Sci., 28, 1030–1038.

    Article  Google Scholar 

  • Choi, Y. E., 2004: Trends on temperature and precipitation extreme events in Korea. J. Korean Geograph. Soc., 39, 711–721.

    Google Scholar 

  • Clark, M. P., and Mark C. Serreze, 2000: Effects of variation of East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean. J. Climate, 13, 3700–3710.

    Article  Google Scholar 

  • CORDEX website, cited 2009: CORDEX Experiment [Available online at http://www.meteo.unican.es/en/projects/CORDEX].

    Google Scholar 

  • Dai, A., 2011: Drought under global warming: a review. WIRES Climatic Change, 2, 45–65. Doi.10.1002/wcc.81.

    Article  Google Scholar 

  • Dankers, R., and R. Hiederer, 2008: Extreme temperature and precipitation in Europe: Analysis of a high-resolution climate change scenario. JRC Sci. and Tech. Reports, 82 pp.

    Google Scholar 

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Climate, 48, 2313–2335.

    Google Scholar 

  • Feng, J. M., Y. L. Wang, C. B. Fu, 2011: Simulation of extreme climate events over China with different regional climate models. Atmos. Oceanic Sci. Lett., 4, 47–56.

    Google Scholar 

  • Giorgi., F., and Coauthors, 2012: RegCM4: model description and preliminary test over multi CORDEX domains. Climate Res., 52, 7–29.

    Article  Google Scholar 

  • Halenka, K., J. Kalvová, Z. Chládová, A. Demeterová, K. Zemánková, and M. Belda, 2006: On the capability of RegCM to capture extremes in long term regional climate simulation — comparison with the observation for Czech Republic. Theor. Appl. Climatol., 86, DOI 10.1007/s00704-005-0205-5.

  • Herrera, S., L. Fita, J. Fernández, and J. M. Gutiérrez, 2010: Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulation over Spain. J. Geophys. Res., 115, D21117, doi:10.1029/2010JD013936.

    Article  Google Scholar 

  • Holtslag, A. A. M., E. I. F. De Bruijin, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575.

    Article  Google Scholar 

  • Im, E. S., and W. T. Kwon, 2007: Characteristics of extreme climate sequences over Korea using a regional climate change scenario. SOLA, 3, DOI:10.2151/sola.2007-005.

  • _____, M. H. Kim, W. T. Kwon, and D. H. Bae, 2007a: Sensitivity of recent and future regional climate simulation to two convection schemes in the RegCM3 nesting system. J. Korean Meteor. Soc., 43, 411–427.

    Google Scholar 

  • _____, J. B. Ahn, and W. T. Kwon, 2007b: Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part 2: Future climate projection (2021–2050). Climate Dyn., 30, 239–254.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tigora, and H. L. Miller, Eds.]. Cambridge University Press, 996 pp.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Foprono, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 93, 1631–1643.

    Article  Google Scholar 

  • Karl, T. R., G. A. Meehl, C. D. Miller, S. J. Hassol, A. M. Waple, and W. L. Murray, Eds., 2008: Weather and climate extremes in a changing climate-Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. National Climatic Data Center, 164 pp. [Available online at http://downloads.climatescience.gov/sap/sap3-3-final-all.pdf.].

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of NCAR Community Climate Model(CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp.

    Google Scholar 

  • Kim, C. S., M. S. Suh, and K. O. Hong, 2009: Bayesian change point analysis of the annual maximum of daily and sub-daily precipitation over South Korea. J. Climate, DOI:10.1175/2009JCLI2800.1, 22, 6741–6757.

    Article  Google Scholar 

  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe. J. Climate, 16, 3665–3680.

    Article  Google Scholar 

  • Lee, D. K., D. H. Cha, and H. S. Kang, 2004: Regional climate simulation of the 1998 summer flood over East Asia. J. Meteor. Soc. Japan, 82, 1735–1753.

    Article  Google Scholar 

  • _____, ______, and S. J. Choi, 2005: A sensitivity study of regional climate simulation to convective parameterization schemes for 1998 East Asian summer monsoon. J. Terres. Atmos. Ocea, Sci, 16, 989–1015.

    Google Scholar 

  • Lee, Y. H., D. H. Cha, and D. K. Lee, 2008: Impact of horizontal resolution of regional climate model on precipitation simulation over the Korean Peninsula. Atmosphere, 18(4), 387–395.

    Google Scholar 

  • Liu, J. W., B. Li, and T. J. Zhou, X. F. Zeng, and L. Feng, 2012: The Extreme summer precipitation over East China during 1982–2007 simulated by the LASG/IAP regional climate model. Atmos. Oceanic Sci. Lett., 5(1), 62–67.

    Google Scholar 

  • Makowski, K., M. Wild, and A. Ohmura, 2008: Diurnal temperature range over Europe between 1950 and 2005. Atmos. Chem. Phys. Discuss., 8, 7051–7084.

    Article  Google Scholar 

  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 1227–1246.

    Article  Google Scholar 

  • Oh, S. G., M. S. Suh, J. S. Myoung, and D. H. Cha, 2011: Impact of boundary conditions and cumulus parameterization schemes on regional climate simulation over South-Korea in the CORDEX-East Asia domain using the RegCM4 model. J. Korean Ear. Sci. Soc., 32, 373–387.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2008: Improvements to the community land model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    Article  Google Scholar 

  • Simmons, A., S. Uppala, D. Dee, and Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110, ECMWF, Reading, United Kingdom, 25–35.

    Google Scholar 

  • Steiner, L. A., J. S. Pal, S. A. Rauscher, J. L. Bell, N. S. Diffenbaugh, A. Boone, L. C. Sloan, and F. Giorgi, 2009: Land surface coupling in regional climate simulations of the West African monsoon. Climate Dyn. DOI:10.1007/s00382-009-0543-6.

    Google Scholar 

  • Suh, M. S., S. K. Hong, and J. H. Kang, 2009: Characteristics of seasonal mean diurnal temperature range and their causes over South Korea. Atmosphere, 19(2), 155–168.

    Google Scholar 

  • _____, and D. K. Lee, 2004: Impact of land/cover change on surface climate over East Asia of extreme climate cases using RegCM2. J. Geophy. Res. 109, D02108, doi:10.1029/2003JD003681.

    Article  Google Scholar 

  • _____, S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Climate, doi:http://dx.doi.org/10.1175/JCLI-D-11-00457.1

    Google Scholar 

  • Trenberth, K. E., 2011: Change in precipitation with climate change. Climate Res., 47, 123–138.

    Article  Google Scholar 

  • Von Storch, H., H. Langerberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664–3673, doi: 1175/1520-0493.

    Article  Google Scholar 

  • Wang, Y. O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J. Climate, 16, 1721–1738.

    Article  Google Scholar 

  • WMO website, cited 2009: Experts recommend ways coping with increasing droughts [Available online at http://www.wmo.int/pages/mediacentre/press_releases/pr_837_en.html]

    Google Scholar 

  • Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096–1108.

    Article  Google Scholar 

  • Zhang, X., Lucie A. Vincent, W. D. Hogg, and A. Niitsoo, 2000: Temperature and precipitation trends in Canada during the 20th century. Atmos.-Ocean, 38(3), 395–429.

    Article  Google Scholar 

  • Zhou, L., A. Dai, Y. Dai, R. S. Vose, C. Z. Zou, Y. Tian, and H. Chen, 2008: Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Climate Dyn., DOI. 10.1007/s00382-008-0387-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Seok Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, SG., Suh, MS. & Cha, DH. Impact of lateral boundary conditions on precipitation and temperature extremes over South Korea in the CORDEX regional climate simulation using RegCM4. Asia-Pacific J Atmos Sci 49, 497–509 (2013). https://doi.org/10.1007/s13143-013-0044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-013-0044-8

Key words

Navigation