Skip to main content

Advertisement

Log in

Preclinical Voxel-Based Dosimetry in Theranostics: a Review

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Due to the increasing use of preclinical targeted radionuclide therapy (TRT) studies for the development of novel theranostic agents, several studies have been performed to accurately estimate absorbed doses to mice at the voxel level using reference mouse phantoms and Monte Carlo (MC) simulations. Accurate dosimetry is important in preclinical theranostics to interpret radiobiological dose-response relationships and to translate results for clinical use. Direct MC (DMC) simulation is believed to produce more realistic voxel-level dose distribution with high precision because tissue heterogeneities and nonuniform source distributions in patients or animals are considered. Although MC simulation is considered to be an accurate method for voxel-based absorbed dose calculations, it is time-consuming, computationally demanding, and often impractical in daily practice. In this review, we focus on the current status of voxel-based dosimetry methods applied in preclinical theranostics and discuss the need for accurate and fast voxel-based dosimetry methods for pretherapy absorbed dose calculations to optimize the dose computation time in preclinical TRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer. 2002;38:2173–88.

    Article  PubMed  Google Scholar 

  2. Grassi R, Cavaliere C, Cozzolino S, Mansi L, Cirillo S, Tedeschi G, et al. Small animal imaging facility: new perspectives for the radiologist. Radiol Med. 2009;114:152–67.

    Article  CAS  PubMed  Google Scholar 

  3. Dash A, Chakraborty S, Pillai MRA, Knapp FF. Peptide receptor radionuclide therapy: an overview. Cancer Biother Radiopharm. 2015;30:47–71.

    Article  CAS  PubMed  Google Scholar 

  4. Flux G, Bardies M, Monsieurs M, Savolainen S, Strand SE, Lassmann M. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.

    Article  PubMed  Google Scholar 

  5. de Jong M, Breeman WA, Bernard BF, Bakker WH, Schaar M, van Gameren A, et al. [177Lu-DOTA0,Tyr3]octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer. 2001;92:628–33.

    Article  PubMed  Google Scholar 

  6. Pool SE, Krenning EP, Koning GA, van Eijck CH, Teunissen JJ, Kam B, et al. Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin Nucl Med. 2010;40(3):209–18.

    Article  PubMed  Google Scholar 

  7. Paganelli G, Sansovini M, Ambrosetti A, Severi S, Monti M, Scarpi E, et al. 177Lu-Dota-octreotate radionuclide therapy of advanced gastrointestinal neuroendocrine tumors: results from a phase II study. Eur J Nucl Med Mol Imaging. 2014;41:1845–51.

    Article  CAS  PubMed  Google Scholar 

  8. Kost SD. Patient-specific dosimetry for targeted radionuclide therapy using deformable anthropomorphic phantoms: Vanderbilt University; 2015.

    Google Scholar 

  9. Ersahin D, Doddamane I, Cheng D. Targeted radionuclide therapy. Cancers. 2011;3:3838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giblin MF, Veerendra B, Smith CJ. Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer. In Vivo. 2005;19:9–29.

    CAS  PubMed  Google Scholar 

  11. de Jong M, Breeman WA, Kwekkeboom DJ, Valkema R, Krenning EP. Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc Chem Res. 2009;42:873–80.

    Article  PubMed  CAS  Google Scholar 

  12. Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid–targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013;54:124–31.

    Article  PubMed  CAS  Google Scholar 

  13. Birn H, Spiegelstein O, Christensen EI, Finnell RH. Renal tubular reabsorption of folate mediated by folate binding protein 1. J Am Soc Nephrol. 2005;16:608–15.

    Article  CAS  PubMed  Google Scholar 

  14. Holm J, Hansen SI, Høier-Madsen M, Bostad L. A high-affinity folate binding protein in proximal tubule cells of human kidney. Kidney Int. 1992;41:50–5.

    Article  CAS  PubMed  Google Scholar 

  15. Sandoval RM, Kennedy MD, Low PS, Molitoris BA. Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Phys Cell Phys. 2004;287:C517.

    Article  CAS  Google Scholar 

  16. Kolbert KS, Watson T, Matei C, Xu S, Koutcher JA, Sgouros G. Murine S factors for liver, spleen, and kidney. J Nucl Med. 2003;44:784–91.

    CAS  PubMed  Google Scholar 

  17. Theodora K, Panagiotis P, George L, George CK. A preclinical simulated dataset of S -values and investigation of the impact of rescaled organ masses using the MOBY phantom. Phys Med Biol. 2016;61:2333.

    Article  CAS  Google Scholar 

  18. Strigari L, Konijnenberg M, Chiesa C, Bardies M, Du Y, Gleisner KS, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41:1976–88.

    Article  CAS  PubMed  Google Scholar 

  19. Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med. 2006;47:1467–75.

    CAS  PubMed  Google Scholar 

  20. Cremonesi M, Ferrari M, Di Dia A, Botta F, De Cicco C, Bodei L, et al. Recent issues on dosimetry and radiobiology for peptide receptor radionuclide therapy. Q J Nucl Med Mol Imaging. 2011;55:155–67.

    CAS  PubMed  Google Scholar 

  21. Stabin MG, Brill AB. State of the art in nuclear medicine dose assessment. Semin Nucl Med. 2008;38:308–20.

    Article  PubMed  Google Scholar 

  22. Funk T, Sun M, Hasegawa BH. Radiation dose estimate in small animal SPECT and PET. Med Phys. 2004;31:2680–6.

    Article  CAS  PubMed  Google Scholar 

  23. Mauxion T, Barbet J, Suhard J, Pouget J-P, Poirot M, Bardiès M. Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data. Med Phys. 2013;40:052501.

    Article  PubMed  Google Scholar 

  24. Larsson E, Ljungberg M, Strand S-E, Jönsson B-A. Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies. Acta Oncol. 2011;50:973–80.

    Article  PubMed  Google Scholar 

  25. Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS. Accurate dosimetry in (131)I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med. 2005;46:840–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, et al. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53:1310–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flynn AA, Green AJ, Pedley RB, Boxer GM, Boden R, Begent RHJ. A mouse model for calculating the absorbed beta-particle dose from 131I- and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res. 2001;156:28–35.

    Article  CAS  PubMed  Google Scholar 

  28. Edmond Hui T, Fisher DR, Kuhn JA, Williams LE, Nourigat C, Badger CC, et al. A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Cancer. 1994;73:951–7.

    Article  Google Scholar 

  29. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, et al. MIRD pamphlet no, 17: the dosimetry of nonuniform activity distributions--radionuclide S-values at the voxel level. J Nucl Med. 1999;40:11S–36S.

    CAS  PubMed  Google Scholar 

  30. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized Schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50:477–84.

    Article  CAS  PubMed  Google Scholar 

  31. Sofou S. Radionuclide carriers for targeting of cancer. Int J Nanomedicine. 2008;3:181–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38:358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee DS, Im H-J, Lee Y-S. Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine. 2015;11:795–810.

    Article  CAS  PubMed  Google Scholar 

  34. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res. 2007;67:2773.

    Article  CAS  PubMed  Google Scholar 

  35. Franc BL, Acton PD, Mari C, Hasegawa BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49:1651–63.

    Article  PubMed  Google Scholar 

  36. Habraken JBA, de Bruin K, Shehata M, Booij J, Bennink R, van Eck Smit BLF, et al. Evaluation of high-resolution pinhole SPECT using a small rotating animal. J Nucl Med. 2001;42:1863–9.

    CAS  PubMed  Google Scholar 

  37. Blankenberg FG, Strauss HW. Nuclear medicine applications in molecular imaging. J Magn Reson Imaging. 2002;16:352–61.

    Article  PubMed  Google Scholar 

  38. Schäfers KP. Imaging small animals with positron emission tomography. Nuklearmedizin. 2003;42:86–9.

    Article  PubMed  Google Scholar 

  39. Cheng D, Wang Y, Liu X, Pretorius PH, Liang M, Rusckowski M, et al. Comparison of 18F PET and 99mTc SPECT imaging in phantoms and in tumored mice. Bioconjug Chem. 2010;21:1565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Del Guerra A, Belcari N. State-of-the-art of PET, SPECT and CT for small animal imaging. Nucl Instrum Methods Phys Res A. 2007;583:119–24.

    Article  CAS  Google Scholar 

  41. Andrew BH, Benjamin LF, Grant TG, Bruce HH. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol. 2008;53:2233.

    Article  Google Scholar 

  42. Freek JB, Brendan V. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol. 2004;49:4579.

    Article  Google Scholar 

  43. Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci. 2003;50:315–20.

    Article  Google Scholar 

  44. Schramm N, Hoppin J, Lackas C, Gershman B, Norenberg J, de Jong M. Improving resolution, sensitivity and applications for the NanoSPECT/CT: a high-performance SPECT/CT imager for small-animal research. J Nucl Med. 2007;48:436P.

    Google Scholar 

  45. Frank PD. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT–CT scanners. Phys Med Biol. 2008;53:4185.

    Article  Google Scholar 

  46. Finucane CM, Murray I, Sosabowski JK, Foster JM, Mather SJ. Quantitative accuracy of low-count SPECT imaging in phantom and in vivo mouse studies. Int J Mol Imaging. 2011;2011:8.

    Article  Google Scholar 

  47. Gupta A, Kim KY, Hwang D, Lee MS, Lee DS, Lee JS. Performance evaluation and quantitative accuracy of multipinhole NanoSPECT/CT scanner for theranostic Lu-177 imaging. J Korean Phys Soc. 2018;72:1379–86.

    Article  Google Scholar 

  48. Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative imaging for targeted radionuclide therapy dosimetry - technical review. Theranostics. 2017;7:4551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vilchis-Juárez A, Ferro-Flores G, Santos-Cuevas C, Morales-Avila E, Ocampo-García B, Díaz-Nieto L, et al. Molecular targeting radiotherapy with cyclo-RGDfK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol. 2014;10:393–404.

    Article  PubMed  CAS  Google Scholar 

  50. Loevinger R, Budinger TF, Watson EE, Society of Nuclear Medicine. Medical internal radiation dose C. MIRD Primer for Absorbed Dose Calculations: Society of Nuclear Medicine; 1988.

  51. Stabin MG, Eckerman KF, Bolch WE, Bouchet LG, Patton PW. Evolution and status of bone and marrow dose models. Cancer Biother Radiopharm. 2002;17:427–33.

    Article  CAS  PubMed  Google Scholar 

  52. Boutaleb S, Pouget JP, Hindorf C, Pelegrin A, Barbet J, Kotzki PO, et al. Impact of mouse model on preclinical dosimetry in targeted radionuclide therapy. Proc IEEE. 2009;97:2076–85.

    Article  Google Scholar 

  53. Muthuswamy MS, Roberson PL, Buchsbaum DJ. A mouse bone marrow dosimetry model. J Nucl Med. 1998;39:1243–7.

    CAS  PubMed  Google Scholar 

  54. Miller WH, Hartmann-Siantar C, Fisher D, Descalle M-A, Daly T, Lehmann J, et al. Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu radionuclides. Cancer Biother Radiopharm. 2005;20:436–49.

    Article  CAS  PubMed  Google Scholar 

  55. Hindorf C, Ljungberg M, Strand S-E. Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med. 2004;45:1960–5.

    CAS  PubMed  Google Scholar 

  56. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 1996;37:538–46.

    CAS  PubMed  Google Scholar 

  57. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  58. Stabin MG, Konijnenberg MW. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. J Nucl Med. 2000;41:149–60.

    CAS  PubMed  Google Scholar 

  59. Parach AA, Rajabi H, Askari MA. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. Radiat Environ Biophys. 2011;50:441–50.

    Article  PubMed  Google Scholar 

  60. Lanconelli N, Pacilio M, Meo SL, Botta F, Dia AD, Aroche LAT, et al. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol. 2012;57:517–33.

    Article  CAS  PubMed  Google Scholar 

  61. Stabin MG, Peterson TE, Holburn GE, Emmons MA. Voxel-based mouse and rat models for internal dose calculations. J Nucl Med. 2006;47:655–9.

    PubMed  Google Scholar 

  62. Dogdas B, Stout D, Chatziioannou, Leahy RM. Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol. 2007;52:577–87.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bitar A, Lisbona A, Bardiès M. S-factor calculations for mouse models using Monte-Carlo simulations. Q J Nucl Med Mol Imaging. 2007;51:343–51.

    CAS  PubMed  Google Scholar 

  64. Bitar A, Lisbona A, Thedrez P, Sai Maurel C, Le Forestier D, Barbet J, et al. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP). Phys Med Biol. 2007;52:1013–25.

    Article  CAS  PubMed  Google Scholar 

  65. Bednarz B, Grudzinski J, Marsh I, Besemer A, Baiu D, Weichert J, et al. Murine-specific internal dosimetry for preclinical investigations of imaging and therapeutic agents. Health Phys. 2018;114:450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim CH, Yeom YS, Nguyen TT, Han MC, Choi C, Lee H, Han H, Shin B, Lee J-K, Kim HS, Zankl M, Petoussi-Henss N, Bolch WE, Lee C, Chung BS, Qiu R, Eckerman K. New mesh-type phantoms and their dosimetric applications, including emergencies. Ann ICRP. 2018;47(3–4):45–62.

  67. Segars WP, Tsui BMW, Frey EC, Johnson GA, Berr SS. Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol. 2004;6:149–59.

    Article  PubMed  Google Scholar 

  68. Segars W, Tsui B. 4D MOBY and NCAT phantoms for medical imaging simulation of mice and men. J Nucl Med. 2007;48:203P.

    Google Scholar 

  69. Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BM. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37:4902–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xie T, Zaidi H. Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides. Phys Med Biol. 2013;58:169–82.

    Article  PubMed  CAS  Google Scholar 

  71. Larsson E, Strand S-E, Ljungberg M, Jönsson B-A. Mouse S-factors based on Monte Carlo simulations in the anatomical realistic Moby phantom for internal dosimetry. Cancer Biother Radiopharm. 2007;22:438–42.

    Article  PubMed  Google Scholar 

  72. Taschereau R, Chatziioannou AF. Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds. Med Phys. 2007;34:1026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keenan MA, Stabin MG, Segars WP, Fernald MJ. RADAR realistic animal model series for dose assessment. J Nucl Med. 2010;51:471–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Buckley LA, Kawrakow I, Rogers DW. An EGSnrc investigation of cavity theory for ion chambers measuring air kerma. Med Phys. 2003;30:1211–8.

    Article  CAS  PubMed  Google Scholar 

  75. Hendricks JS, Adam KJ, Booth TE, Briesmeister JF, Carter LL, Cox LJ, et al. Present and future capabilities of MCNP. Appl Radiat Isot. 2000;53:857–61.

    Article  CAS  PubMed  Google Scholar 

  76. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Allison J, Amako K, Apostolakis JE, Araujo HA, Dubois PA, Asai MA, et al. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53:270–8.

    Article  Google Scholar 

  78. Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang JM, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41:064301.

    Article  PubMed  Google Scholar 

  79. Berger MJ. Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. Washington: National Bureau of Standards; 1971.

    Google Scholar 

  80. Seltzer SM. Electron-photon Monte Carlo calculations: the ETRAN code. Int J Rad Appl Instrum A. 1991;42:917–41.

    Article  CAS  Google Scholar 

  81. Prideaux AR, Song H, Hobbs RF, He B, Frey EC, Ladenson PW, et al. Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J Nucl Med. 2007;48:1008–16.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sgouros G, Frey E, Wahl R, He B, Prideaux A, Hobbs R. Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med. 2008;38:321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, et al. 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med. 2010;51:1155–62.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hobbs RF, Wahl RL, Lodge MA, Javadi MS, Cho SY, Chien DT, et al. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med. 2009;50:1844–7.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, et al. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med. 1997;38:301–7.

    CAS  PubMed  Google Scholar 

  86. Guy MJ, Flux GD, Papavasileiou P, Flower MA, Ott RJ. RMDP: a dedicated package for 131I SPECT quantification, registration and patient-specific dosimetry. Cancer Biother Radiopharm. 2003;18:61–9.

    Article  CAS  PubMed  Google Scholar 

  87. Gardin I, Bouchet LG, Assié K, Caron J, Lisbona A, Ferrer L, et al. Voxeldose: a computer program for 3-D dose calculation in therapeutic nuclear medicine. Cancer Biother Radiopharm. 2003;18:109–15.

    Article  PubMed  Google Scholar 

  88. Wilderman S, Dewaraja Y. Method for fast CT/SPECT-based 3D Monte Carlo absorbed dose computations in internal emitter therapy. IEEE Trans Nucl Sci. 2007;54:146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marcatili S, Pettinato C, Daniels S, Lewis G, Edwards P, Fanti S, et al. Development and validation of RAYDOSE: a Geant4-based application for molecular radiotherapy. Phys Med Biol. 2013;58:2491.

    Article  CAS  PubMed  Google Scholar 

  90. Kost SD, Dewaraja YK, Abramson RG, Stabin MG. VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4. Cancer Biother Radiopharm. 2015;30:16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56:881.

    Article  CAS  PubMed  Google Scholar 

  92. Perrot Y, Degoul F, Auzeloux P, Bonnet M, Cachin F, Chezal JM, et al. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand. Phys Med Biol. 2014;59:2183.

    Article  CAS  PubMed  Google Scholar 

  93. Gupta A, Lee MS, Kim JH, Park S, Park HS, Kim SE, et al. Preclinical voxel-based dosimetry through GATE Monte Carlo simulation using PET/CT imaging of mice. Phys Med Biol. 2019;64:095007.

    Article  CAS  PubMed  Google Scholar 

  94. Brechbiel MW. Targeted alpha-therapy: past, present, future? Dalton Trans. 2007;43:4918–28.

    Article  CAS  Google Scholar 

  95. Haberkorn U, Giesel F, Morgenstern A, Kratochwil C. The future of radioligand therapy: α, β, or both? J Nucl Med. 2017;58:1017–8.

    Article  CAS  PubMed  Google Scholar 

  96. Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3:488–99.

    Article  CAS  PubMed  Google Scholar 

  97. Mendoza-Nava H, Ferro-Flores G, Ramirez FD, Ocampo-Garcia B, Santos-Cuevas C, Aranda-Lara L, et al. 177Lu-dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity: a potential theranostic radiopharmaceutical. J Nanomater. 2016;2016:11.

    Article  CAS  Google Scholar 

  98. Kim K, Kim S-J. Lu-177-based peptide receptor radionuclide therapy for advanced neuroendocrine tumors. Nucl Med Mol Imaging. 2018;52:208–15.

    Article  CAS  PubMed  Google Scholar 

  99. Lee S, Xie J, Chen X. Peptide-based probes for targeted molecular imaging. Biochemistry. 2010;49:1364–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pratt EC, Shaffer TM, Grimm J. Nanoparticles and radiotracers: advances toward radionanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:872–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011;38:S69–77.

    Article  PubMed  Google Scholar 

  102. Sgouros G, Hobbs RF. Dosimetry for radiopharmaceutical therapy. Semin Nucl Med. 2014;44:172–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mezzenga E, D’Errico V, D’Arienzo M, Strigari L, Panagiota K, Matteucci F, et al. Quantitative accuracy of 177Lu SPECT imaging for molecular radiotherapy. PLoS One. 2017;12:e0182888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Hong KJ, Choi Y, Lee SC, Lee SY, Song TY, Min BJ, et al. A compact SPECT/CT system for small animal imaging. IEEE Trans Nucl Sci. 2006;53:2601–4.

    Article  Google Scholar 

  105. Stabin MG. Update: the case for patient-specific dosimetry in radionuclide therapy. Cancer Biother Radiopharm. 2008;23:273–84.

    Article  CAS  PubMed  Google Scholar 

  106. Ilan E, Sandström M, Wassberg C, Sundin A, Garske-Román U, Eriksson B, et al. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med. 2015;56:177–82.

    Article  PubMed  CAS  Google Scholar 

  107. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506:250–303.

    Article  CAS  Google Scholar 

  108. Shcherbinin S, Piwowarska-Bilska H, Celler A, Birkenfeld B. Quantitative SPECT/CT reconstruction for 177Lu and 177Lu/ 90Y targeted radionuclide therapies. Phys Med Biol. 2012;57:5733.

    Article  CAS  PubMed  Google Scholar 

  109. Haller S, Reber J, Brandt S, Bernhardt P, Groehn V, Schibli R, et al. Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy. Nucl Med Biol. 2015;42:770–9.

    Article  CAS  PubMed  Google Scholar 

  110. Kuo HT, Merkens H, Zhang Z, Uribe CF, Lau J, Zhang C, et al. Enhancing treatment efficacy of 177Lu-PSMA-617 with the conjugation of an albumin-binding motif: preclinical dosimetry and endoradiotherapy studies. Mol Pharm. 2018;15:5183–91.

    Article  CAS  PubMed  Google Scholar 

  111. Timmermand OV, Elgqvist J, Beattie KA, Örbom A, Larsson E, Eriksson SE, et al. Preclinical efficacy of hK2 targeted [177Lu] hu11B6 for prostate cancer theranostics. Theranostics. 2019;9:2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gupta A, Shin JH, Lee MS, Park JY, Kim K, Kim JH, et al. Voxel-based dosimetry of iron oxide nanoparticle-conjugated 177Lu-labeled folic acid using SPECT/CT imaging of mice. Mol Pharm. 2019;16:1498–506.

    Article  CAS  PubMed  Google Scholar 

  113. Furhang EE, Chui C-S, Sgouros G. A Monte Carlo approach to patient-specific dosimetry. Med Phys. 1996;23:1523–9.

    Article  CAS  PubMed  Google Scholar 

  114. Zaidi H. Relevance of accurate Monte Carlo modeling in nuclear medical imaging. Med Phys. 1999;26:574–608.

    Article  CAS  PubMed  Google Scholar 

  115. Loudos G, Tsougos I, Boukis S, Karakatsanis N, Georgoulias P, Theodorou K, et al. A radionuclide dosimetry toolkit based on material-specific Monte Carlo dose kernels. Nucl Med Commun. 2009;30:504–12.

    Article  PubMed  Google Scholar 

  116. Dieudonné A, Hobbs RF, Lebtahi R, Maurel F, Baechler S, Wahl RL, et al. Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct Monte Carlo methods. J Nucl Med. 2013;54:236–43.

    Article  PubMed  Google Scholar 

  117. Hippeläinen E, Tenhunen M, Sohlberg A. Fast voxel-level dosimetry for 177Lu labelled peptide treatments. Phys Med Biol. 2015;60:6685.

    Article  PubMed  CAS  Google Scholar 

  118. Khazaee Moghadam M, Kamali Asl A, Geramifar P, Zaidi H. Evaluating the application of tissue-specific dose kernels instead of water dose kernels in internal dosimetry: a Monte Carlo Study. Cancer Biother Radiopharm. 2016;31:367–79.

    Article  CAS  PubMed  Google Scholar 

  119. Lee MS, Kim JH, Paeng JC, Kang KW, Jeong JM, Lee DS, et al. Whole-body voxel-based personalized dosimetry: the multiple voxel S-value approach for heterogeneous media with nonuniform activity distributions. J Nucl Med. 2018;59:1133–9.

    Article  CAS  PubMed  Google Scholar 

  120. Lee MS, Hwang D, Kim JH, Lee JS. Deep-dose: a voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci Rep. 2019;9:10308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60:1183–9.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Park J, Hwang D, Kim KY, Kang SK, Kim YK, Lee JS. Computed tomography super-resolution using deep convolutional neural network. Phys Med Biol. 2018;63:145011.

    Article  PubMed  Google Scholar 

  123. Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.

    Article  CAS  PubMed  Google Scholar 

  124. Kang SK, Seo S, Shin SA, Byun MS, Lee DY, Kim YK, et al. Adaptive template generation for amyloid PET using a deep learning approach. Hum Brain Mapp. 2018;39:3769–78.

    Article  PubMed  Google Scholar 

  125. Hegazy MAA, Cho MH, Cho MH, Lee SY. U-net based metal segmentation on projection domain for metal artifact reduction in dental CT. Biomed Eng Lett. 2019;9:375–85.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mansour RF. Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed Eng Lett. 2018;8:41–57.

    Article  PubMed  Google Scholar 

  127. Cicone F, Gnesin S, Denoël T, Stora T, van der Meulen NP, Müller C, et al. Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice. EJNMMI Res. 2019;9:53.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sivapackiam J, Laforest R, Sharma V. 68Ga[Ga]-Galmydar: biodistribution and radiation dosimetry studies in rodents. Nucl Med Biol. 2018;59:29–35.

    Article  CAS  PubMed  Google Scholar 

  129. Maina T, Konijnenberg MW, KolencPeitl P, Garnuszek P, Nock BA, Kaloudi A, et al. Preclinical pharmacokinetics, biodistribution, radiation dosimetry and toxicity studies required for regulatory approval of a phase I clinical trial with 111In-CP04 in medullary thyroid carcinoma patients. Eur J Pharm Sci. 2016;91:236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hino-Shishikura A, Suzuki A, Minamimoto R, Shizukuishi K, Oka T, Tateishi U, et al. Biodistribution and radiation dosimetry of [18F]-5-fluorouracil. Appl Radiat Isot. 2013;75:11–7.

    Article  CAS  PubMed  Google Scholar 

  131. Repetto-Llamazares AH, Larsen RH, Mollatt C, Lassmann M, Dahle J. Biodistribution and dosimetry of 177Lu-tetulomab, a new radioimmunoconjugate for treatment of non-Hodgkin lymphoma. Curr Radiopharm. 2013;6:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sakata M, Oda K, Toyohara J, Ishii K, Nariai T, Ishiwata K. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies. Ann Nucl Med. 2013;27:285–96.

    Article  CAS  PubMed  Google Scholar 

  133. Stabin MG. Fundamentals of nuclear medicine dosimetry. Springer Science & Business Media; 2008.

Download references

Funding

This work was supported by grants from National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science, ICT and Future Planning (grant no. NRF-2016R1A2B3014645).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Ethics declarations

Conflict of Interest

Arun Gupta, Min Sun Lee, Joong Hyun Kim, Dong Soo Lee, and Jae Sung Lee declare that they have no conflict of interest.

Ethical Statement

All procedures performed in studies involving animals were in accordance with the ethical standards of Seoul National University, College of Medicine, Seoul, South Korea.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Lee, M.S., Kim, J.H. et al. Preclinical Voxel-Based Dosimetry in Theranostics: a Review. Nucl Med Mol Imaging 54, 86–97 (2020). https://doi.org/10.1007/s13139-020-00640-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-020-00640-z

Keywords

Navigation