Skip to main content

Advertisement

Log in

Radio-graphene in Theranostic Perspectives

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Owing to its unique physicochemical properties such as high surface area, notable biocompatibility, robust mechanical strength, high thermal conductivity, and ease of functionalization, 2D-layered graphene has received tremendous attention as a futuristic nanomaterial and its-associated research has been rapidly evolving in a variety of fields. With the remarkable advances of graphene especially in the biomedical realm, in vivo evaluation techniques to examine in vivo behavior of graphene are largely demanded under the hope of clinical translation. Many different types of drugs such as the antisense oligomer and chemotherapeutics require optimal delivery conveyor and graphene is now recognized as a suitable candidate due to its simple and high drug loading property. Termed as ‘radio-graphene’, radioisotope-labeled graphene approach was recently harnessed in the realm of biomedicine including cancer diagnosis and therapy, contributing to the acquisition of in vivo information for targeted drug delivery. In this review, we highlight current examples for bioapplication of radiolabeled graphene with brief perspectives on future strategies in its extensive bio- or clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490:192–200.

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41:2283–307.

    Article  CAS  PubMed  Google Scholar 

  3. Koppens FH, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 2014;9:780–93.

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Niu L, Zheng Z, Yan F. Photosensitive graphene transistors. Adv Mater. 2014;26:5239–73.

    Article  CAS  PubMed  Google Scholar 

  5. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46:2211–24.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Nayak TR, Hong H, Cai W. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale. 2012;4:3833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics. 2012;2:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, et al. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev. 2013;113:3407–24.

    Article  CAS  PubMed  Google Scholar 

  9. Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater. 2013;25:168–86.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–57.

    Article  CAS  PubMed  Google Scholar 

  11. Yang K, Feng L, Liu Z. The advancing uses of nano-graphene in drug delivery. Expert Opin Drug Deliv. 2015;12:601–12.

    Article  CAS  PubMed  Google Scholar 

  12. Yu D, Ruan P, Meng Z, Zhou J. The structure-dependent electric release and enhanced oxidation of drug in graphene oxide-based nanocarrier loaded with anticancer herbal drug berberine. J Pharm Sci. 2015;104:2489–500.

    Article  CAS  PubMed  Google Scholar 

  13. You P, Yang Y, Wang M, Huang X, Huang X. Graphene oxide-based nanocarriers for cancer imaging and drug delivery. Curr Pharm Des. 2015;21:3215–22.

    Article  CAS  PubMed  Google Scholar 

  14. Dong H, Dong C, Ren T, Li Y, Shi D. Surface-engineered graphene-based nanomaterials for drug delivery. J Biomed Nanotechnol. 2014;10:2086–106.

    Article  CAS  PubMed  Google Scholar 

  15. Xu H, Fan M, Elhissi AM, Zhang Z, Wan KW, Ahmed W, et al. PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine. 2015;10:1247–62.

    Article  CAS  PubMed  Google Scholar 

  16. Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Theranostics. 2015;5:710–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang Y, Yang HY, Ai Y. DNA single-base mismatch study using graphene oxide nanosheets-based fluorometric biosensors. Anal Chem. 2015;87:9132–6.

    Article  CAS  PubMed  Google Scholar 

  18. Jang H, Ryoo SR, Lee MJ, Han SW, Min DH. A new helicase assay based on graphene oxide for anti-viral drug development. Mol Cells. 2013;35:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li JL, Tang B, Yuan B, Sun L, Wang XG. A review of optical imaging and therapy using nanosized graphene and graphene oxide. Biomaterials. 2013;34:9519–34.

    Article  CAS  PubMed  Google Scholar 

  20. Kim SH, Lee JE, Sharker SM, Jeong JH, In I, Park SY. In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. Biomacromolecules. 2015;16:3519–29.

    Article  CAS  PubMed  Google Scholar 

  21. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.

    Article  CAS  PubMed  Google Scholar 

  22. Chen L, Zhong X, Yi X, Huang M, Ning P, Liu T, et al. Radionuclide (131)I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials. 2015;66:21–8.

    Article  PubMed  Google Scholar 

  23. Yang K, Feng L, Hong H, Cai W, Liu Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc. 2013;8:2392–403.

    Article  CAS  PubMed  Google Scholar 

  24. Prim D, Rebeaud F, Cosandey V, Marti R, Passeraub P, Pfeifer ME. ADIBO-based “click” chemistry for diagnostic peptide micro-array fabrication: physicochemical and assay characteristics. Molecules. 2013;18:9833–49.

    Article  CAS  PubMed  Google Scholar 

  25. Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5:516–22.

    Article  CAS  PubMed  Google Scholar 

  26. Hong H, Zhang Y, Engle JW, Nayak TR, Theuer CP, Nickles RJ, et al. In vivo targeting and positron emission tomography imaging of tumor vasculature with (66)Ga-labeled nano-graphene. Biomaterials. 2012;33:4147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano. 2012;6:2361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi JY, Lee BC. Click reaction: an applicable radiolabeling method for molecular imaging. Nucl Med Mol Imaging. 2015;49:258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramenda T, Kniess T, Bergmann R, Steinbach J, Wuest F. Radiolabelling of proteins with fluorine-18 via click chemistry. Chem Commun (Camb). 2009;28:7521–3.

    Article  Google Scholar 

  30. Nahain AA, Lee JE, Jeong JH, Park SY. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery. Biomacromolecules. 2013;14:4082–90.

    Article  CAS  PubMed  Google Scholar 

  31. Shi S, Yang K, Hong H, Chen F, Valdovinos HF, Goel S, et al. VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vivo. Biomaterials. 2015;39:39–46.

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Wu Q, Zhao Y, Bai Y, Chen P, Xia T, et al. Response of microRNAs to in vitro treatment with graphene oxide. ACS Nano. 2014;8:2100–10.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D, et al. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev. 2014;46:232–46.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu Y, Sun Y, Chen Y, Liu W, Jiang J, Guan W, et al. In vivo molecular MRI imaging of prostate cancer by targeting PSMA with polypeptide-labeled superparamagnetic iron oxide nanoparticles. Int J Mol Sci. 2015;16:9573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011;6:1–8.

    Google Scholar 

  36. Lu FM, Yuan Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg. 2015;5:433–47.

    PubMed  PubMed Central  Google Scholar 

  37. Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25:2258–68.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Li Z, Wang J, Li J, Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29:205–12.

    Article  PubMed  Google Scholar 

  39. Jasim DA, Menard-Moyon C, Begin D, Bianco A, Kostarelos K. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci. 2015;6:3952–64.

    Article  CAS  Google Scholar 

  40. Fazaeli Y, Akhavan O, Rahighi R, Aboudzadeh MR, Karimi E, Afarideh H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C Mater Biol Appl. 2014;45:196–204.

    Article  CAS  PubMed  Google Scholar 

  41. Shi S, Yang K, Hong H, Valdovinos HF, Nayak TR, Zhang Y, et al. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials. 2013;34:3002–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jung HS, Kong WH, Sung DK, Lee MY, Beack SE, do Keum H, et al. Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano. 2014;8:260–8.

    Article  CAS  Google Scholar 

  43. Miao W, Shim G, Kim G, Lee S, Lee HJ, Kim YB, et al. Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets. J Control Release. 2015;211:28–36.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Wu H, Wang J, Yang Y, Wu D, Zhang Y, et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials. 2015;42:66–77.

    Article  PubMed  Google Scholar 

  45. Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, et al. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano. 2015;9:9199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, Yong CS, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces. 2015;7:28647–55.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou L, Zhou L, Wei S, Ge X, Zhou J, Jiang H, et al. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J Photochem Photobiol B. 2014;5(135):7–16.

    Article  Google Scholar 

  48. Kim YK, Na HK, Kim S, Jang H, Chang SJ, Min DH. One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small. 2015;11:2527–35.

    Article  CAS  PubMed  Google Scholar 

  49. Wu C, He Q, Zhu A, Li D, Xu M, Yang H, et al. Synergistic anticancer activity of photo- and chemoresponsive nanoformulation based on polylysine-functionalized graphene. ACS Appl Mater Interfaces. 2014;6:21615–23.

    Article  CAS  PubMed  Google Scholar 

  50. Lewis B, Chalhoub E, Chalouhy C, Sartor O. Radium-223 in bone-metastatic prostate cancer: current data and future prospects. Oncology (Williston Park). 2015;29:483–8.

    Google Scholar 

  51. Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4:306–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project funded by the Ministry of Health & Welfare, Republic of Korea (HI14C3344), and funded by the Ministry of Health & Welfare, Republic of Korea (HI14C1277), and the Technology Innovation Program (10052749) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Won Hwang.

Ethics declarations

Conflict of Interest

Do Won Hwang declares that he has no conflict of interest.

Ethical Statement

This article does not contain any studies with animals performed by any of the authors. The manuscript has not been published before or is not under consideration for publication anywhere else.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, D.W. Radio-graphene in Theranostic Perspectives. Nucl Med Mol Imaging 51, 17–21 (2017). https://doi.org/10.1007/s13139-016-0410-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-016-0410-4

Keywords

Navigation