Skip to main content
Log in

PET/MRI: Technical Challenges and Recent Advances

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Integrated positron emission tomography (PET)/magnetic resonance imaging (MRI), which can provide complementary functional and anatomical information about a specific organ or body system at the molecular level, has become a powerful imaging modality to understand the molecular biology details, disease mechanisms, and pharmacokinetics in animals and humans. Although the first experiment on the PET/MRI was performed in the early 1990s, its clinical application was accomplished in recent years because there were various technical challenges in integrating PET and MRI in a single system with minimum mutual interference between PET and MRI. This paper presents the technical challenges and recent advances in combining PET and MRI along with several approaches for improving PET image quality of the PET/MRI hybrid imaging system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bar-Shalom R, Yefremov N, Guralnik L, Gaitini D, Frenkel A, Kuten A, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med. 2003;44:1200–9.

    PubMed  Google Scholar 

  2. Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol. 2004;22:4357–68.

    Article  PubMed  Google Scholar 

  3. Scarfone C, Lavely WC, Cmelak AJ, Delbeke D, Martin WH, Billheimer D, et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med. 2004;45:543–52.

    PubMed  Google Scholar 

  4. Zaidi H, Mawlawi O. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys. 2007;34:1525–8.

    Article  PubMed  Google Scholar 

  5. Heesakkers RA, Hövels AM, Jager GJ, van den Bosch HC, Witjes JA, Raat HP, et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 2008;9:850–6.

    Article  CAS  PubMed  Google Scholar 

  6. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.

    CAS  PubMed  Google Scholar 

  7. Shan ZY, Mateja SJ, Reddick WE, Glass JO, Shulkin BL. Retrospective evaluation of PET-MRI registration algorithms. J Digit Imaging. 2011;24:485–93.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chun SY, Reese TG, Ouyang J, Guerin B, Catana C, Zhu X, et al. MRI-based nonrigid motion correction in simultaneous PET/MRI. J Nucl Med. 2012;53:1284–91.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Brendle CB, Schmidt H, Fleischer S, Braeuning UH, Pfannenberg CA, Schwenzer NF. Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology. 2013;268:190–9.

    Article  PubMed  Google Scholar 

  10. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60:R115–54.

    Article  PubMed  Google Scholar 

  11. Yamamoto S, Kuroda K, Senda M. Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci. 2003;50:1683–5.

    Article  CAS  Google Scholar 

  12. Pichler B, Wehrl HF, Kolb A, Judenhofer MS. PET/MRI: the next generation of multi-modality imaging? Semin Nucl Med. 2008;38:199–208.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Slates RB, Farahani K, Shao Y, Taylor J, Summers PE, Williams S, et al. A study of artifacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. Phys Med Biol. 1999;44:2015–27.

    Article  CAS  PubMed  Google Scholar 

  14. Raylman RR, Majewski S, Lemieux S, Velana SS, Krossb B, Popovb V, et al. Initial tests of a prototype MRI-compatible PET imager. Nucl Inst Meth A. 2006;569:306–9.

    Article  CAS  Google Scholar 

  15. Mackewn JE, Halsted P, Charles-Edwards G, Page R, Totman JJ, Sunassee K, et al. Performance evaluation of an MRI-compatible pre-clinical PET system using long optical fibers. IEEE Trans Nucl Sci. 2010;57:1052–62.

    Article  Google Scholar 

  16. Wu Y, Catana C, Farrell R, Dokhale PA, Shah KS, Qi J, et al. PET performance evaluation of an MR-compatible PET insert. IEEE Trans Nucl Sci. 2009;56:574–80.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, et al. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol. 2011;56:2459–80.

    Article  PubMed  Google Scholar 

  18. Schaart DR, Seifert S, Vinke R, Dam HT, Dendooven P, Löhner H, et al. LaBr(3):Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys Med Biol. 2010;55:N179–89.

    Article  PubMed  Google Scholar 

  19. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639–47.

    PubMed  Google Scholar 

  20. Peng BJ, Walton JH, Cherry SR, Willig-Onwuachi J. Studies of the interactions of an MRI system with the shielding in a combined PET/MRI scanner. Phys Med Biol. 2010;55:265–80.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Maramraju SH, Smith SD, Rescia S, Stoll S, Budassi M, Vaska P, et al. Electromagnetic interactions in a shielded PET/MRI system for simultaneous PET/MR imaging in 9.4 T: evaluation and results. IEEE Trans Nucl Sci. 2012;59:1892–9.

    Article  Google Scholar 

  22. Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon N Y. 2001;39:279–85.

    Article  CAS  Google Scholar 

  23. Duppenbecker PM, Wehner J, Renz W, Lodomez S, Truhn D, Marsden PK, et al. Gradient transparent RF housing for simultaneous PET/MRI using carbon fiber composites. IEEE Nuclear Science Symp. and Medical Imaging Conf. 2012;M18-2.

  24. Wehner J, Weissler B, Dueppenbecker P, Gebhardt P, Schug D, Ruetten W, et al. PET/MRI insert using digital SiPMs: investigation of MR-compatibility. Nucl Instr and Meth A. 2014;734:116–21.

    Article  CAS  Google Scholar 

  25. Peng BJ, Wu Y, Cherry SR, Walton JH. New shielding configurations for a simultaneous PET/MRI scanner at 7T. J Magn Reson. 2014;239:50–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kuhn FP, Hüllner M, Mader CE, Kastrinidis N, Huber GF, von Schulthess GK, et al. Contrast-enhanced PET/MR imaging versus contrast-enhanced PET/CT in head and neck cancer: how much MR information is needed? J Nucl Med. 2014;55:551–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hu Z, Yang W, Liu H, Wang K, Bao C, Song T, et al. From PET/CT to PET/MRI: advances in instrumentation and clinical applications. Mol Pharm. 2014;11:3798–809.

    Article  CAS  PubMed  Google Scholar 

  29. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.

    Article  PubMed  Google Scholar 

  30. Levin C, Glover G, Deller T, McDaniel D, Peterson W, Maramraju SH. Prototype time-of-flight PET ring integrated with a 3T MRI system for simultaneous whole-body PET/MR imaging. J Nucl Med. 2013;54:148.

    Google Scholar 

  31. Iagaru A, Minamimoto R, Levin C, Barkhodari A, Jamali M, Holley D, et al. The potential of TOF PET-MRI for reducing artifacts in PET images. EJNMMI Physics. 2015;2:A77.

    Article  Google Scholar 

  32. Wehner J, Weissler B, Dueppenbecker PM, Gebhardt P, Schug D, Ruetten W, et al. PET/MRI insert using digital SiPMs: investigation of MR-compatibility. Nucl Instr and Meth A. 2014;734:116–21.

    Article  CAS  Google Scholar 

  33. Wehner J, Weissler B, Dueppenbecker PM, Gebhardt P, Goldschmidt B, Schug D, et al. MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers. Phys Med Biol. 2015;60:2231–55.

    Article  CAS  PubMed  Google Scholar 

  34. Kang J, Choi Y, Hong KJ, Jung JH, Hu W, Huh YS, et al. A feasibility study of photosensor charge signal transmission to preamplifier using long cable for development of hybrid PET-MRI. Med Phys. 2010;37:5655–64.

    Article  PubMed  Google Scholar 

  35. Hong KJ, Choi Y, Jung JH, Kang J, Hu W, Lim HK, et al. A prototype MR insertable brain PET using tileable GAPD arrays. Med Phys. 2013;40:042503.

    Article  PubMed  Google Scholar 

  36. Jung JH, Choi Y, Jung J, Kim S, Lim HK, Im KC, et al. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain. Med Phys. 2015;42:2354–63.

    Article  PubMed  Google Scholar 

  37. Bieniosek MF, Olcott PD, Levin CS. Readout strategy of an electro-optical coupled PET detector for time-of-flight PET/MRI. Phys Med Biol. 2013;58:7227–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Olcott PD, Glover G, Levin CS. Cross-strip multiplexed electro-optical coupled scintillation detector for integrated PET/MRI. IEEE Trans Nucl Sci. 2013;6:3198–204.

    Article  Google Scholar 

  39. Lee BJ, Grant AM, Chang C-M, Glover GH, Levin CS. RF-transmissive PET detector insert for simultaneous PET/MRI. IEEE Nuclear Science Symp. and Medical Imaging Conf. 2014;M08-1.

  40. Lee BJ, Grant AM, Chang C-M, Watkins R, Levin CS. MR performance evaluation of an RF-penetrable PET insert with integrated RF receive coil for simultaneous PET/MRI. J Nucl Med. 2015;56:1854.

    Google Scholar 

  41. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefdhotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: Evaluation with PET/CT data. J Nucl Med. 2003;50:520–6.

    Article  Google Scholar 

  42. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Bornert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    Article  CAS  PubMed  Google Scholar 

  43. Grodzki DM, Jakob PM, Heismann B. Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med. 2012;67:510–8.

    Article  PubMed  Google Scholar 

  44. Montandon ML, Zaidi H. Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage. 2005;25:278–86.

    Article  PubMed  Google Scholar 

  45. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med. 2008;49:1875–83.

    Article  PubMed  Google Scholar 

  46. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation and atlas-based methods. J Nucl Med. 2011;52:1392–9.

    Article  PubMed  Google Scholar 

  47. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sonograms. IEEE Trans Med Imaging. 1999;18:393–403.

    Article  CAS  PubMed  Google Scholar 

  48. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. Magn Reason Mater Phy. 2013;26:99–113.

    Article  Google Scholar 

  49. Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885–99.

    Article  PubMed  Google Scholar 

  50. Mehranian A, Zaidi H. Clinical assessment of emission- and segmentation-based MR-guided attenuation correction in whole-body time-of-flight PET/MR imaging. J Nucl Med. 2015;56:877–83.

    Article  PubMed  Google Scholar 

  51. Paulus D, Braun H, Aklan B, Quick HH. Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils. Med Phys. 2012;39:4306–15.

    Article  PubMed  Google Scholar 

  52. Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI. The effect of limited MR field of view in MR/PET attenuation correction. Med Phys. 2010;37:2804–12.

    Article  PubMed  Google Scholar 

  53. Nuyts J, Bal G, Kehren F, Fenchel M, Michel C, Watson C. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging. 2013;32:237–46.

    Article  PubMed  Google Scholar 

  54. Ouyang J, Li Q, Fakhri GE. Magnetic resonance-based motion correction for positron emission tomography imaging. Semin Nucl Med. 2013;43:60–7.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Rahmim A, Rousset O, Zaidi H. Trategies for motion tracking and correction in PET. PET Clin. 2007;2:251–66.

    Article  Google Scholar 

  56. Grimm R, Furst S, Souvatzoglou M, Forman C, Hutter JM, Dregely I, et al. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal. 2015;19:110–20.

    Article  PubMed  Google Scholar 

  57. Dikaios N, Izquierdo-Garcia D, Graves MJ, Mani V, Fayad ZA, Fryer TD. MRI-based motion correction of thoracic PET: initial comparison of acquisition protocols and correction strategies suitable for simultaneous PET/MRI systems. Eur Radiol. 2012;22:439–46.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Semin Nucl Med. 2013;43:30–44.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571–83.

    Article  CAS  PubMed  Google Scholar 

  60. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.

    CAS  PubMed  Google Scholar 

  61. Wurslin C, Schmidt H, Martirosian P, Brendle C, Boss A, Schwenzer NF, et al. Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med. 2013;54:464–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Programs (No. 2013R1A1A2006870 and No. 2013R1A1A2058563) through the National Research Foundation of Korea (NRF) of the Ministry of Education and by the Commercializations Promotion Agency for R&D Outcomes (COMPA) of the Ministry of Science, ICT and Future Planning (MISP), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Choi.

Ethics declarations

Conflict of Interest

Jin Ho Jung, Yong Choi and Ki Chun Im declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J.H., Choi, Y. & Im, K.C. PET/MRI: Technical Challenges and Recent Advances. Nucl Med Mol Imaging 50, 3–12 (2016). https://doi.org/10.1007/s13139-016-0393-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-016-0393-1

Keywords

Navigation