Skip to main content

Advertisement

Log in

In Vivo Cell Tracking with Bioluminescence Imaging

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation. 2006;113(7):1005–14.

    Article  PubMed  Google Scholar 

  2. Zeiser R, Nguyen VH, Beilhack A, Buess M, Schulz S, Baker J, et al. Inhibition of CD4+ CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood. 2006;108(1):390–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Berman SC, Galpoththawela C, Gilad AA, Bulte JW, Walczak P. Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med. 2011;65(2):564–74.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Acton P, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging. 2005;49(4):349–60.

    CAS  PubMed  Google Scholar 

  5. Zhang Y, Ruel M, Beanlands RS, Dekemp RA, Suuronen EJ, DaSilva JN. Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Design. 2008;14(36):3835–53.

    Article  CAS  Google Scholar 

  6. Ahn BC. Applications of molecular imaging in drug discovery and development process. Curr Pharm Biotechnol. 2011;12(4):459–68.

    Article  CAS  PubMed  Google Scholar 

  7. Chao F, Shen Y, Zhang H, Tian M. Multimodality molecular imaging of stem cells therapy for stroke. BioMed Res Int. 2013;2013:849819.

  8. Yang CY, Hsiao JK, Tai M-F, Chen ST, Cheng HY, Wang JL, et al. Direct labeling of hMSC with SPIO: the long-term influence on toxicity, chondrogenic differentiation capacity, and intracellular distribution. Mol Imag Biol. 2011;13(3):443–51.

    Article  Google Scholar 

  9. Kraitchman DL, Bulte JW. In vivo imaging of stem cells and beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol. 2009;29(7):1025–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Keyaerts M, Caveliers V, Lahoutte T. Bioluminescence imaging: looking beyond the light. Trends Mol Med. 2012;18(3):164–72.

    Article  PubMed  Google Scholar 

  11. Baker M. Whole-animal imaging: the whole picture. Nature. 2010;463(7283):977–80.

    Article  CAS  PubMed  Google Scholar 

  12. Verhaegen M, Christopoulos TK. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem. 2002;74(17):4378–85.

    Article  CAS  Google Scholar 

  13. Thompson EM, Nagata S, Tsuji FI. Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. Proc Natl Acad Sci U S A. 1989;86(17):6567–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lorenz W, Cormier M, O’Kane D, Hua D, Escher A, Szalay A. Expression of the Renilla reniformis luciferase gene in mammalian cells. J Biolumin Chemilumin. 1996;11(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  15. Nealson K, Hastings JW. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev. 1979;43(4):496.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Fraga H. Firefly luminescence: a historical perspective and recent developments. Photochem Photobiol Sci. 2008;7(2):146–58.

    Article  CAS  PubMed  Google Scholar 

  17. Close DM, Xu T, Sayler GS, Ripp S. In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors. 2010;11(1):180–206.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Lorenz WW, McCann RO, Longiaru M, Cormier MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A. 1991;88(10):4438–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Loening AM, Fenn TD, Wu AM, Gambhir SS. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel. 2006;19(9):391–400.

    Article  CAS  PubMed  Google Scholar 

  20. Maguire CA, Deliolanis NC, Pike L, Niers JM, Tjon-Kon-Fat L-A, Sena-Esteves M, et al. Gaussia luciferase variant for high-throughput functional screening applications. Anal Chem. 2009;81(16):7102–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tannous BA. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc. 2009;4(4):582–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ziegler M, Baldwin TO. Biochemistry of bacterial bioluminescence. Curr Top Bioenerg. 1981;12:65–113.

    Article  CAS  Google Scholar 

  23. Tu S-C, Mager HI. Biochemistry of bacterial bioluminescence. Photochem Photobiol. 1995;62(4):615–24.

    Article  CAS  PubMed  Google Scholar 

  24. de Almeida PE, van Rappard JR, Wu JC. In vivo bioluminescence for tracking cell fate and function. Am J Physiol Heart Circ Physiol. 2011;301(3):H663–71.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ahn BC. Molecular imaging; biological and medical applications. Republic of Korea: Kyungpook National University Press; 2009.

    Google Scholar 

  26. Liang Y, Walczak P, Bulte JW. Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells. J Biomed Opt. 2012;17(1):0160041–6.

    Article  Google Scholar 

  27. Seliger H, Buck J, Fastie W, McElroy W. The spectral distribution of firefly light. J Gen Physiol. 1964;48(1):95–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Seliger H, McElroy W. The colors of firefly bioluminescence: enzyme configuration and species specificity. Proc Natl Acad Sci U S A. 1964;52(1):75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Czupryna J, Tsourkas A. Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells. PLoS One. 2011;6(5):e20073.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kitayama A, Yoshizaki H, Ohmiya Y, Ueda H, Nagamune T. Creation of a thermostable firefly luciferase with pH-insensitive luminescent color. Photochem Photobiol. 2003;77(3):333–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kajiyama N, Nakano E. Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng. 1991;4(6):691–3.

    Article  CAS  PubMed  Google Scholar 

  32. Shapiro E, Lu C, Baneyx F. A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng Des Sel. 2005;18(12):581–7.

    Article  CAS  PubMed  Google Scholar 

  33. Branchini BR, Ablamsky DM, Davis AL, Southworth TL, Butler B, Fan F, et al. Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem. 2010;396(2):290–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bhaumik S, Gambhir S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 2002;99(1):377–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Luker KE, Luker GD. Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res. 2008;78(3):179–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zhao H, Doyle TC, Wong RJ, Cao Y, Stevenson DK, Piwnica-Worms D, et al. Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imag. 2004;3(1):43–54.

    Article  CAS  Google Scholar 

  37. Loening AM, Dragulescu-Andrasi A, Gambhir SS. A red-shifted Renilla luciferase for transient reporter-gene expression. Nat Methods. 2010;7(1):5–6.

    Article  CAS  PubMed  Google Scholar 

  38. Loening AM, Wu AM, Gambhir SS. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods. 2007;4(8):641–3.

    Article  CAS  PubMed  Google Scholar 

  39. Griesenbach U, Vicente CC, Roberts MJ, Meng C, Soussi S, Xenariou S, et al. Secreted Gaussia luciferase as a sensitive reporter gene for in vivo and ex vivo studies of airway gene transfer. Biomaterials. 2011;32(10):2614–24.

    Article  CAS  PubMed  Google Scholar 

  40. Bovenberg MSS, Degeling MH, Tannous BA. Enhanced Gaussia luciferase blood assay for monitoring of in vivo biological processes. Anal Chem. 2011;84(2):1189–92.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wurdinger T, Badr C, Pike L, de Kleine R, Weissleder R, Breakefield XO, et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods. 2008;5(2):171–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Badr CE, Hewett JW, Breakefield XO, Tannous BA. A highly sensitive assay for monitoring the secretory pathway and ER stress. PLoS One. 2007;2(6):e571.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hiramatsu N, Kasai A, Hayakawa K, Nagai K, Kubota T, Yao J, et al. Secreted protein-based reporter systems for monitoring inflammatory events: critical interference by endoplasmic reticulum stress. J Immunol Methods. 2006;315(1):202–7.

    Article  CAS  PubMed  Google Scholar 

  44. Tannous BA, Kim D-E, Fernandez JL, Weissleder R, Breakefield XO. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther. 2005;11(3):435–43.

    Article  CAS  PubMed  Google Scholar 

  45. Santos EB, Yeh R, Lee J, Nikhamin Y, Punzalan B, Punzalan B, et al. Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med. 2009;15(3):338–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl Environ Microbiol. 2002;68(8):3780–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Meighen EA. Molecular biology of bacterial bioluminescence. Microbiol Rev. 1991;55(1):123–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol. 1995;18(4):593–603.

    Article  CAS  PubMed  Google Scholar 

  49. Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun. 2000;68(6):3594–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Min J-J, Nguyen VH, Kim H-J, Hong Y, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc. 2008;3(4):629–36.

    Article  CAS  PubMed  Google Scholar 

  51. Min J-J, Kim H-J, Park JH, Moon S, Jeong JH, Hong Y-J, et al. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imag Biol. 2008;10(1):54–61.

    Article  Google Scholar 

  52. Mezzanotte L, Que I, Kaijzel E, Branchini B, Roda A, Löwik C. Sensitive dual color in vivo bioluminescence imaging using a new red codon optimized firefly luciferase and a green click beetle luciferase. PLoS One. 2011;6(4):e19277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Wang J, Najjar A, Zhang S, Rabinovich B, Willerson JT, Gelovani JG, et al. Molecular imaging of mesenchymal stem cell mechanistic insight into cardiac repair after experimental myocardial infarction. Circ Cardiovasc Imaging. 2012;5(1):94–101.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mezzanotte L, Aswendt M, Tennstaedt A, Hoeben R, Hoehn M, Löwik C. Evaluating reporter genes of different luciferases for optimized in vivo bioluminescence imaging of transplanted neural stem cells in the brain. Contrast Media Mol Imaging. 2013;8(6):505–13.

    Article  CAS  PubMed  Google Scholar 

  55. Leng L, Wang Y, He N, Wang D, Zhao Q, Feng G, et al. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials. 2014;35(19):5162–70.

    Article  CAS  PubMed  Google Scholar 

  56. Nakajima Y, Kimura T, Sugata K, Enomoto T, Asakawa A, Kubota H, et al. Multicolor luciferase assay system: one-step monitoring of multiple gene expressions with a single substrate. Biotechniques. 2005;38(6):891.

    Article  CAS  PubMed  Google Scholar 

  57. Kitayama Y, Kondo T, Nakahira Y, Nishimura H, Ohmiya Y, Oyama T. An in vivo dual-reporter system of cyanobacteria using two railroad-worm luciferases with different color emissions. Plant Cell Physiol. 2004;45(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  58. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, et al. Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy. 2010;12(5):615–25.

    Article  CAS  PubMed  Google Scholar 

  59. Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab. 2000;20(10):1393–408.

    Article  CAS  PubMed  Google Scholar 

  60. Koelling S, Miosge N. Stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opin Biol Ther. 2009;9(11):1399–405.

    Article  PubMed  Google Scholar 

  61. Lee DS. Optical imaging for stem cell differentiation to neuronal lineage. Nucl Med Mol Imag. 2012;46(1):1–9.

    Article  Google Scholar 

  62. Sunwoo M, Yun H, Song S, Ham J, Hong J, Lee JE, et al. Mesenchymal stem cells can modulate longitudinal changes in cortical thickness and its related cognitive decline in patients with multiple system atrophy. Front Aging Neurosci. 2014;6:118.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Cihova M, Altanerova V, Altaner C. Stem cell based cancer gene therapy. Mol Pharm. 2011;8(5):1480–7.

    Article  CAS  PubMed  Google Scholar 

  64. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101(8):2999–3001.

    Article  CAS  PubMed  Google Scholar 

  65. van der Bogt KE, Sheikh AY, Schrepfer S, Hoyt G, Cao F, Ransohoff KJ, et al. Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation. 2008;118(14 suppl 1):S121–9.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Yang JJ, Liu ZQ, Zhang JM, Wang H-b HSY, Liu JF, et al. Real-time tracking of adipose tissue-derived stem cells with injectable scaffolds in the infarcted heart. Heart Vessel. 2013;28(3):385–96.

    Article  Google Scholar 

  67. Kim JE, Ahn B-C, Lee HW, Hwang MH, Shin SH, Lee SW et al. In vivo monitoring of survival and proliferation of hair stem cells in a hair follicle generation animal model. Mol Imag. 2013;12(5).

  68. Cao F, Wagner RA, Wilson KD, Xie X, Fu J-D, Drukker M, et al. Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One. 2008;3(10):e3474.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007;50(19):1884–93.

    Article  PubMed  Google Scholar 

  70. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IHM, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 2007;100(2):263–72.

    Article  CAS  PubMed  Google Scholar 

  71. Kutschka I, Kofidis T, Chen IY, von Degenfeld G, Zwierzchoniewska M, Hoyt G, et al. Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation. 2006;114(1 supp):I-I174–80.

    Google Scholar 

  72. Shi M, Li J, Liao L, Chen B, Li B, Chen L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007;92(7):897–904.

    Article  PubMed  Google Scholar 

  73. Zhang D, Fan G-C, Zhou X, Zhao T, Pasha Z, Xu M, et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2008;44(2):281–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther. 2008;16(3):571–9.

    Article  CAS  PubMed  Google Scholar 

  75. Wang H, Cao F, De A, Cao Y, Contag C, Gambhir SS, et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells. 2009;27(7):1548–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther. 2003;14(13):1247–54.

    Article  CAS  PubMed  Google Scholar 

  77. Akbar S, Fazle M, Abe M, Yoshida O, Murakami H, Onji M. Dendritic cell-based therapy as a multidisciplinary approach to cancer treatment: present limitations and future scopes. Curr Med Chem. 2006;13(26):3113–9.

    Article  CAS  Google Scholar 

  78. Gao JQ, Okada N, Mayumi T, Nakagawa S. Immune cell recruitment and cell-based system for cancer therapy. Pharm Res. 2008;25(4):752–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Costa GL, Sandora MR, Nakajima A, Nguyen EV, Taylor-Edwards C, Slavin AJ, et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol. 2001;167(4):2379–87.

    Article  CAS  PubMed  Google Scholar 

  80. Rabinovich BA, Ye Y, Etto T, Chen JQ, Levitsky HI, Overwijk WW, et al. Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci U S A. 2008;105(38):14342–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003;101(2):640–8.

    Article  CAS  PubMed  Google Scholar 

  82. Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol. 2005;7(1):83–92.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Nguyen VH, Zeiser R, Chang DS, Beilhack A, Contag CH, Negrin RS. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood. 2007;109(6):2649–56.

    Article  CAS  PubMed  Google Scholar 

  84. Shin IJ, Shon S-M, Schellingerhout D, Park J-Y, Kim J-Y, Lee SK, et al. Characterization of partial ligation-induced carotid atherosclerosis model using dual-modality molecular imaging in ApoE knock-out mice. PLoS One. 2013;8(9):e73451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Lee HW, Jeon YH, Hwang M-H, Kim J-E, T-i P, Ha J-H, et al. Dual reporter gene imaging for tracking macrophage migration using the human sodium iodide symporter and an enhanced firefly luciferase in a murine inflammation model. Mol Imag Biol. 2013;15(6):703–12.

    Article  Google Scholar 

Download references

Funding

This research was supported by a grant from the Medical Cluster R&D Support Project of Daegu Gyeongbuk Medical Innovation Foundation, Republic of Korea (2013), grants from the National Nuclear R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012M2A2A7014020, 2009–0078234) and grants from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea. (A111345).

Conflicts of Interest

The authors Jung Eun Kim, Kalimuthu Senthilkumar, Byeong-Cheol Ahn declare that they have no conflict of interest.

Disclosure

The manuscript does not contain clinical studies or patient data.

Animal Studies

The in vivo mouse data are reprinted with permission from Kim et al. [67].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Cheol Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.E., Kalimuthu, S. & Ahn, BC. In Vivo Cell Tracking with Bioluminescence Imaging. Nucl Med Mol Imaging 49, 3–10 (2015). https://doi.org/10.1007/s13139-014-0309-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-014-0309-x

Keywords

Navigation