Skip to main content
Log in

Authentic Modelling Problems in Mathematics Education—Examples and Experiences

Authentische Modellierungsprobleme im Mathematikunterricht – Beispiele und Erfahrungen

  • Originalarbeit
  • Published:
Journal für Mathematik-Didaktik Aims and scope Submit manuscript

Abstract

In this paper, we describe mathematical modelling activities, which deal with authentic problems. These kinds of problems have been tackled in various modelling activities, amongst others in a modelling week. After a description of the theoretical approach used, one of these authentic modelling problems is described in detail showing students’ solutions. Based on the evaluation of a modelling week with several hundred students, it is argued that these kinds of authentic problems are feasible with students from upper secondary level. Furthermore, it became apparent that most students would appreciate these kinds of examples included in school mathematics in order to promote their skills to use mathematics in their real life.

Zusammenfassung

In dem Artikel werden mathematische Modellierungsaktivitäten beschrieben, die von authentischen Problemen ausgehen. Diese Probleme wurden in verschiedenen Modellierungsaktivitäten behandelt, u.a. in Modellierungswochen. Nach einer Beschreibung des zugrundeliegenden theoretischen Ansatzes wird eines dieser authentischen Probleme im Detail mit Lösungsansätzen von Schülerinnen und Schüler beschrieben. Auf der Basis der Evaluation einer Modellierungswoche mit mehreren hundert Schülerinnen und Schüler wird argumentiert, dass diese Art von authentischen Modellierungsproblemen Schülerinnen und Schülern des oberen Sekundarbereichs zugänglich ist. Des Weiteren wird deutlich, dass die meisten Schülerinnen und Schüler der Integration solcher Beispiele in den normalen Mathematikunterricht positiv gegenüber stehen, da mit solchen Beispielen ihre Kompetenzen, Mathematik im wirklichen Leben anzuwenden, gefördert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The average number of students attending mathematics at advanced level at the Federal level of Germany is with 29.5% in 2008 remarkably higher than in Hamburg going up to 40% in parts of East Germany, such as Sachsen-Anhalt.

  2. Such a sample solution can be found in Ortlieb (2009).

  3. The used sign “%” was originally used by the group.

  4. When irrigating a quadratic garden (side length a) with only one TVR, there are two equivalent ideal solutions with regard to criterion 1. Both of them have an extent of irrigation of π/4: either the TVR is placed in the middle of the garden and irrigates in a full circle with the radius r=0.5a or the TVR is placed in one corner and irrigates in a quarter circle with the radius r=a according the full side length of the square. The second configuration was probably the origin of the students’ considerations.

  5. A numerical analysis shows that method A is to be preferred when b/a<0.77 is true.

References

  • Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: conceptual clarification and educational planning. Teaching Mathematics and its Applications, 23(3), 123–139.

    Article  Google Scholar 

  • Blomhøj, M., & Højgaard Jensen, T. (2007). What’s all the fuss about competencies. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: the 14th ICMI study (pp. 45–56). New York: Springer.

    Chapter  Google Scholar 

  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht – Trends und Perspektiven. In G. Kadunz, H. Kautschitsch, G. Ossimitz, & E. Schneider (Eds.), Trends und Perspektiven (pp. 15–38). Wien: Hölder-Pichler-Tempsky.

    Google Scholar 

  • Blum, W., & Leiß, D. (2006). “Filling up”—the problem of independence preserving teacher interventions in lessons with demanding modelling tasks. In M. Bosch (Ed.), Proceedings of the fourth Congress of the European society for research in mathematics education CERME4 (pp. 1623–1633). IQS FUNDIEMI Business Institute

  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. P. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Google Scholar 

  • Blum, W., Galbraith, P.L., Henn, H.-W., & Niss, M. (Eds.), (2007). Modelling and applications in mathematics education: the 14th ICMI study. New York: Springer.

    Google Scholar 

  • Galbraith, P. (2007). Authenticity and goals—overview. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: the 14th ICMI study (pp. 181–184). New York: Springer.

    Chapter  Google Scholar 

  • Haines, C. R., & Crouch, R. M. (2006). Getting to grips with real world contexts: developing research in mathematical modelling. In M. Bosch (Ed.), Proceedings of the fourth Congress of the European society for research in mathematics education CERME4, (pp. 1634–1644). IQS FUNDIEMI Business Institute

  • Haines, C. R., Crouch, R. M., & Davis, J. (2001). Understanding students’ modelling skills. In J. F. Matos, W. Blum, K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education: ICTMA9: Applications in science and technology (pp. 366–381). Chichester: Horwood.

    Google Scholar 

  • Julie, C., & Mudaly, V. (2007). Mathematical modelling of social issues in school mathematics in South Africa. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: the 14th ICMI study (pp. 503–510). New York: Springer.

    Chapter  Google Scholar 

  • Kaiser, G. (2007). Mathematical modelling at schools—how to promote modelling competencies. In C. P. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): education, engineering and economics (pp. 110–119). Chichester: Horwood.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302–310.

    Article  Google Scholar 

  • Kaiser, G., & Schwarz, B. (2006). Mathematical modelling as bridge between school and university. Zentralblatt für Didaktik der Mathematik, 38(2), 196–208.

    Article  Google Scholar 

  • Kaiser, G. et al. (2004). Das Projekt Modellierung in der Schule. Darstellung der verwendeten Modellierungssituationen sowie ihrer Bearbeitungen, Reflexion der Modellierungsprozesse. Hamburg: Universität Hamburg. Preprint.

    Google Scholar 

  • Kaiser, G., Sriraman, B., Blomhøj, M., & Garcia, F. J. (2007). Report from the working group modelling and applications—differentiating perspectives and delineating commonalities. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth congress of the European society for research in mathematics education (pp. 2035–2041). Larnaca Cyprus, ERME, 22–26 February 2007. Nicosia: University of Cyprus.

    Google Scholar 

  • Kaiser-Meßmer, G. (1986). Anwendungen im Mathematikunterricht, Vol. 1: – Theoretische Konzeptionen, Vol. 2: – Empirische Untersuchungen. Bad Salzdetfurth: Franzbecker.

    Google Scholar 

  • Maaß, K. (2004). Mathematisches Modellieren im Unterricht. Ergebnisse einer empirischen Studie. Hildesheim: Franzbecker.

    Google Scholar 

  • Niss, M. (1992). Applications and modelling in school mathematics—directions for future development. Roskilde: IMFUFA Roskilde Universitetscenter.

    Google Scholar 

  • Niss, M. (2003). Mathematical competencies and the learning of mathematics: the Danish KOM project. In A. Gagatsis & S. Papastravridis (Eds.), 3rd mediterranean conference on mathematical education (pp. 115–124). Athens: Hellenic Mathematical Society and Cyprus Mathematical Society.

    Google Scholar 

  • Ortlieb, C. P., Dresky, V. C., Gasser, I., & Günzel, S. (2009). Mathematische Modellierung: Eine Einführung in zwölf Fallstudien. Wiesbaden: Vieweg+Teubner.

    Google Scholar 

  • Ortlieb, C. P. (2009). Einige Überlegungen zur Modellierung der optimalen Gartenbewässerung. Unpublished manuscript.

  • Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: the 14th ICMI study (pp. 201–208). New York: Springer.

    Chapter  Google Scholar 

  • Pollak, H. (1969). How can we teach applications of mathematics. Educational Studies in Mathematics, 2, 393–404.

    Article  Google Scholar 

  • Schwarz, B., & Kaiser, G. (2007). Mathematical modelling in school—experiences from a project integrating school and university. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth congress of the European society for research in mathematics education (pp. 2180–2189). Larnaca, Cyprus, ERME, 22–26 February 2007. Nicosia: University of Cyprus.

    Google Scholar 

  • Steinke, I. (2000). Gütekriterien Qualitativer Forschung. In U. Flick, E. V. Kardorff, & I. Steinke (Eds.), Qualitative Forschung – Ein Handbuch (pp. 319–331). Reinbek: Rowohlt Verlag.

    Google Scholar 

  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research. Newbury Park: Sage.

    Google Scholar 

Download references

Acknowledgements

We thank Maren Hoffstall and Anna Orschulik for their extensive work within the evaluation process, Christoph Lederich for editorial support, and Hannah Heinrichs for her translational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Kaiser.

Appendices

Appendix A: Questionnaire about the Modelling Week

1.1 A.1 Questions about Mathematics

  1. (1)

    What is mathematics in your opinion? Describe in some sentences.

  2. (2)

    Are you interested in mathematics? If so, why and what are you interested in especially?

    If not, why not and what are you discouraged by?

  3. (3)

    In your opinion, what relevance does mathematics have for this society?

1.2 A.2 Questions about Mathematics Teaching

  1. (1)

    Are you interested in the subject of mathematics in school? If so, why? If not, why not?

  2. (2)

    Describe topics, problems, and activities of mathematic classes which appeal to you. (Max. 3)

  3. (3)

    Describe topics, problems, and activities of mathematic classes which discourage or bore you. (Max. 3)

  4. (4)

    Have you been able to apply any mathematic approaches or methods which you have learned in school to everyday life or other fields of knowledge so far? If so, which ones and where?

1.3 A.3 Questions about the Modelling Example

  1. (1)

    Please value the modelling example that you dealt with during the modelling week:

    1. (a)

      How interesting was the problem that you dealt with?

      figure a
    2. (b)

      How did you rate the difficulty of the modelling problem?

      figure b
    3. (c)

      How highly was the problem structured?

      figure c
    4. (d)

      How realistic was the modelling example?

      figure d
  2. (2)

    In your opinion, what did you learn when dealing with the subject?

  3. (3)

    Should these examples be increasingly dealt with as part of regular maths classes or would you reject this? Please give reasons for your position

  4. (4)

    Other comments that are relevant to me.

Appendix B: Codes to the Question: “From Your Point of View, What Did You Learn when Dealing with the Modelling Example?”

Application

  • General mathematical application

  • Critical questioning of techniques

  • Everyday-life reference of mathematics

  • Practical reference of mathematics

  • Geometry

Formal mathematics

  • Creating diagrams

  • Using mathematical terms

  • Developing formulae

  • Finding different approaches

  • Setting up equations

  • Stochastic

  • Calculating sectors of a circle

  • Circles in a square

  • Trigonometry

  • Geometry

  • Calculation of areas

  • Iteration

Application of the computer

  • Using mathematical programmes

  • Transforming ideas into algorithms

  • Creating algorithms

Formal work with the computer

  • Programming languages

  • Programming

  • Create graphics

  • Power Point

  • Excel

  • Matlab

Working techniques

  • Problem-solving strategies

  • Working independently

  • Gather information about unknown topics

  • Judging requirements

  • Structuring ideas

  • Recognising the variety of approaches

  • Optimism

  • Goal-oriented work

  • Organising work

  • Stamina

  • Making decisions

  • Structuring

  • Simplifying

Mathematical insights

  • Different approaches

  • Diversity of approach

  • Diversity of aspects in mathematics

  • Complexity

  • Specificity

Social aspects

  • Teamwork

  • Getting to know the fellow students

Appendix C: Codes to the Question: “Should These Examples Be Increasingly Dealt with as Part of Regular Maths Classes or Would You Reject This? Please Give Reasons for Your Position”

3.1 C.1 Yes

Reference to reality

  • Sense of mathematics

  • Recognising connections

  • Reference to reality

  • Reference to own everyday life

  • Clearness

  • Practical relevance

Improvement of working techniques

  • Working independently

  • Stamina

  • One’s own initiative

  • Group work

Variation

  • Diversified

  • Motivation

  • Interest

  • Appealing to the students

  • Fun

Requested change

  • Clearer structure

  • Simplifications

  • More support

  • Structuring of problems

  • Concreteness of problems

Sense

  • Advancement of complex thinking

  • Practise

  • Advancement of mathematical thinking

  • Simplified/“playful” learning

  • Better understanding

  • Memorising of learned things

  • No solution given

  • Puzzling

  • Good preparation/insight into the future tasks of a mathematician

3.2 C.2 No

Time problem

  • Restriction by the curriculum

  • Does not fit into the shortened time until university entrance examination

  • Too complex to be dealt with in class

  • Too extensive to be dealt with in class

Lack of interest

  • Boring

  • Uninteresting

  • Not useful for every student

Meaninglessness

  • Pointlessness

  • No connection to mathematics

  • No mediation of the foundation

  • No relevance concerning university entrance examination

Complexity

  • Complicated

  • Extensive

Inaccuracy

  • Vague formulations

  • No clear tasks

  • Variable level of difficulty

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, G., Schwarz, B. Authentic Modelling Problems in Mathematics Education—Examples and Experiences. J Math Didakt 31, 51–76 (2010). https://doi.org/10.1007/s13138-010-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13138-010-0001-3

Keywords

Mathematics Subject Classification (2000)

Navigation