Skip to main content
Log in

Spherical fast multiscale approximation by locally compact orthogonal wavelets

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

Using a stereographical projection to the plane we construct an \({\mathcal{O}(N\log(N))}\) algorithm to approximate scattered data in N points by orthogonal, compactly supported wavelets on the surface of a 2-sphere or a local subset of it. In fact, the sphere is not treated all at once, but is split into subdomains whose results are combined afterwards. After choosing the center of the area of interest the scattered data points are mapped from the sphere to the tangential plane through that point. By combining a k-nearest neighbor search algorithm and the two dimensional fast wavelet transform a fast approximation of the data is computed and mapped back to the sphere. The algorithm is tested with nearly 1 million data points and yields an approximation with 0.35% relative errors in roughly 2 min on a standard computer using our MATLAB® implementation. The method is very flexible and allows the application of the full range of two dimensional wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoine J.-P., Demanet L., Jacques L., Vandergheynst P.: Wavelets on the sphere : implementation and approximations. Appl. Comput. Harmon. Anal. 13(3), 177–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Antoine J.-P., Vandergheynst P.: Wavelets on the n-sphere and other manifolds. J. Math. Phys. 39, 3987–4008 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Antoine J.-P., Vandergheynst P.: Wavelets on the 2-sphere: a group-theoretical approach. Appl. Comput. Harmon. Anal. 7, 262–291 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Axler, S., Bourdon, P., Ramey, W.: Harmonic function theory, 2nd edn. Graduate Texts in Mathematics, vol. 137. Springer, New York (2001)

  • Bernardes G., Bernstein S., Cerejeiras P., Kähler U.: Wavelets invariant under finite reflection groups. Math. Methods Appl. Sci. 33(4), 473–484 (2009)

    Google Scholar 

  • Coxeter, H.S.M.: Introduction to Geometry, Wiley Classics Library, Wiley, New York (1989) (Reprint of the 1969 edition)

  • Dahlke S., Dahmen W., Schmitt E., Weinreich I.: Multiresolution analysis and wavelets on s 2 and s 3. Numer. Funct. Anal. Optim. 16, 19–41 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlke S., Maass P.: Continuous wavelet transforms with application to analyzing functions on spheres. J. Fourier Anal. Appl. 2, 379–396 (1996)

    MathSciNet  MATH  Google Scholar 

  • Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics. 61. SIAM, Society for Industrial and Applied Mathematics. xix, Philadelphia, PA

  • de Berg M., van Kreveld M., Overmars M., Schwarzkopf O.: Computational Geometry, 2nd edn. Springer, New York (2000)

    MATH  Google Scholar 

  • Freeden, W., Gervens, T., Schreiner, M.: Constructive approximation on the sphere (with applications to geomathematics). In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (1998)

  • Freeden W., Schreiner M.: Biorthogonal locally supported wavelets on the sphere based on zonal kernel functions. J. Fourier Anal. Appl. 13, 693–709 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Göttelmann J.: Locally supported wavelets on manifolds with applications to the 2d sphere. Appl. Comput. Harmon. Anal. 7, 1–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Harbrecht H., Schneider R.: Wavelet galerkin schemes for boundary integral equations—implementation and quadrature. SIAM J. Sci. Comput. 27(4), 1347–1370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Holschneider M.: Continuous wavelet transforms on the sphere. J. Math. Phys. 37, 4156–4165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen M., Oonincx P.: Second Generation Wavelets and Applications. Springer, Berlin (2005)

    Google Scholar 

  • Kunoth A., Sahner J.: Wavelets on manifolds: an optimized construction. Math. Comp. 75, 1319–1349 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA (1998)

  • Mallat S.: A Wavelet Tour of Signal Processing. Academic Press Inc., San Diego (1998)

    MATH  Google Scholar 

  • Narcowitch F.J., Ward J.D.: Nonstationary wavelets on the m-sphere for scattered data. Appl. Comput. Harmon. Anal. 3, 1324–1336 (1996)

    Google Scholar 

  • Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: a tutorial, Modern sampling theory. Appl. Numer. Harmon. Anal., pp. 247–270. Birkhäuser Boston, Boston, MA (2001)

  • Rummel R., Balmino G., Johannessen J., Visser P., Woodworth P.: Dedicated gravity field missions–principles and aims. J. Geodyn. 33, 3–20 (2002)

    Article  Google Scholar 

  • Rummel, R., Reigber, C., Ilk, K.: The use of satellite-to-satellite tracking for gravity parameter recovery, ESA Workshop on Space oceanography, Navigation and Geodynamics (SONG), ESA-SP-137, pp. 151–161 (1978)

  • Simons, F.J.: Open source software for spherical harmonics in matlab. http://geoweb.princeton.edu/people/simons/software.html (2010)

  • Simons F., Dahlen F.: Spherical slepian functions and the polar gap in geodesy. Geophys. J. Int. 166, 1039–1061 (2006)

    Article  Google Scholar 

  • Tagliasacchi, A.: Kd-tree for matlab. http://www.mathworks.com/matlabcentral/fileexchange/21512 (2008)

  • Wiaux Y., Jacques L., Vandergheynst P.: Correspondence principle between spherical and euclidean wavelets. Astrophys. J. 632, 15–28 (2005)

    Article  Google Scholar 

  • Wiaux Y., McEwen J.D., Vandergheynst P., Blanc O.: Exact reconstruction with directional wavelets on the sphere. Mon. Not. R. Astron. Soc. 388, 770–788 (2008)

    Article  Google Scholar 

  • Womersley R.S., Sloan I.H.: How good can polynomial interpolation on the sphere be?. Adv. Comput. Math. 14, 195–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gutting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, F., Gutting, M. Spherical fast multiscale approximation by locally compact orthogonal wavelets. Int J Geomath 2, 69–85 (2011). https://doi.org/10.1007/s13137-011-0015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-011-0015-0

Keywords

Mathematics Subject Classification (2000)

Navigation