Skip to main content

Advertisement

Log in

Modal structure and propagation of internal tides in the northeastern South China Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a ~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs. From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford M H. 2003. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423(6936): 159–162, doi: 10.1038/nature01628

    Article  Google Scholar 

  • Duda T F, Lynch J F, Irish J D, et al. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1105–1130, doi: 10.1109/JOE.2004.836998

    Article  Google Scholar 

  • Duda T F, Rainville L. 2008. Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. Journal of Geophysical Research: Oceans, 113(C3): C03025

    Article  Google Scholar 

  • Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of Barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

    Article  Google Scholar 

  • Farmer D, Li Q, Park J H. 2009. Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmosphere-Ocean, 47(4): 267–280, doi: 10.3137/OC313.2009

    Article  Google Scholar 

  • Garrett C, Kunze E. 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39: 57–87, doi: 10.1146/annurev. fluid.39.050905.110227

    Article  Google Scholar 

  • Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press

    Google Scholar 

  • Huang X D, Wang Z Y, Zhang Z W, et al. 2018. Role of mesoscale eddies in modulating the semidiurnal internal tide: observation results in the northern South China Sea. Journal of Physical Oceanography, 48(8): 1749–1770, doi: 10.1175/JPO-D-17-0209.1

    Article  Google Scholar 

  • Jan S, Chen C T A. 2009. Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: A case study at the southernmost coast of Taiwan. Journal of Geophysical Research: Oceans, 114(C4): C04021

    Article  Google Scholar 

  • Klymak J M, Alford M H, Pinkel R, et al. 2011. The breaking and scattering of the internal tide on a continental slope. Journal of Physical Oceanography, 41(5): 926–945, doi: 10.1175/2010JPO4500.1

    Article  Google Scholar 

  • Lien R C, Tang T Y, Chang M H, et al. 2005. Energy of nonlinear internal waves in the South China Sea. Geophysical Research Letters, 32(5): L05615

    Article  Google Scholar 

  • Liu Qian, Xie Xiaohui, Shang Xiaodong, et al. 2016. Coherent and incoherent internal tides in the southern South China Sea. Chinese Journal of Oceanology and Limnology, 34(6): 1374–1382, doi: 10.1007/s00343-016-5171-5

    Article  Google Scholar 

  • Munk W, Wunsch C. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010, doi: 10.1016/S0967-0637(98)00070-3

    Article  Google Scholar 

  • Nash J D, Alford M H, Kunze E. 2005. Estimating internal wave energy fluxes in the ocean. Journal of Atmospheric and Oceanic Technology, 22(10): 1551–1570, doi: 10.1175/JTECH1784.1

    Article  Google Scholar 

  • Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. Journal of Geophysical Research: Oceans, 109(C4): C04027

    Article  Google Scholar 

  • Pingree R D, New A L. 1991. Abyssal penetration and bottom reflection of internal tidal energy in the Bay of Biscay. Journal of Physical Oceanography, 21(1): 28–39, doi: 10.1175/1520- 0485(1991)021<0028:APABRO>2.0.CO;2

    Article  Google Scholar 

  • Powell B S, Kerry C G, Cornuelle B D. 2013. Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements. The Journal of the Acoustical Society of America, 134(4): 3211–3222, doi: 10.1121/1.4818786

    Article  Google Scholar 

  • Rainville L, Johnston T M S, Carter G S, et al. 2010. Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. Journal of Physical Oceanography, 40(2): 311–325, doi: 10.1175/2009JPO4256.1

    Article  Google Scholar 

  • Shang Xiaodong, Liu Qian, Xie Xiaohui, et al. 2015. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 98: 43–52, doi: 10.1016/j.dsr.2014.12.005

    Article  Google Scholar 

  • Tian Jiwei, Yang Qingxuan, Zhao Wei. 2009. Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography, 39(12): 3191–3203, doi: 10.1175/2009JPO3899.1

    Article  Google Scholar 

  • Xie Xiaohui, Liu Qian, Zhao Zhongxiang, et al. 2018. Deep sea currents driven by breaking internal tides on the continental slope. Geophysical Research Letters, 45(12): 6160–6166

    Google Scholar 

  • Xie Xiaohui, Shang Xiaodong, Chen Guiying. 2010. Nonlinear interactions among internal tidal waves in the northeastern South China Sea. Chinese Journal of Oceanology and Limnology, 28(5): 996–1001, doi: 10.1007/s00343-010-9064-8

    Article  Google Scholar 

  • Xie Xiaohui, Shang Xiaodong, Van Haren H, et al. 2013. Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophysical Research Letters, 40(8): 1580–1586, doi: 10.1002/grl.50322

    Article  Google Scholar 

  • Xu Zhenhua, Liu Kun, Yin Baoshu, et al. 2016. Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research: Oceans, 121(11): 8268–8286, doi: 10.1002/jgrc.v121.11

    Google Scholar 

  • Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. Journal of Marine Systems, 134: 101–112, doi: 10.1016/j.jmarsys.2014.03.002

    Article  Google Scholar 

  • Zhao Zhongxiang. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research: Oceans, 119(8): 5434–5448, doi: 10.1002/2014JC010014

    Google Scholar 

  • Zhao Zhongxiang, Alford M H, MacKinnon J A, et al. 2010. Longrange propagation of the semidiurnal internal tide from the Hawaiian Ridge. Journal of Physical Oceanography, 40(4): 713–736, doi: 10.1175/2009JPO4207.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Shang.

Additional information

Foundation item: The State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences under contract No. LTO1915; the National Natural Science Foundation of China under contract Nos 41630970, 41876016, 41676022 and 41521005; the Instrument Developing Project of the CAS under contract No. YZ201432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xie, X., Shang, X. et al. Modal structure and propagation of internal tides in the northeastern South China Sea. Acta Oceanol. Sin. 38, 12–23 (2019). https://doi.org/10.1007/s13131-019-1473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1473-1

Key words

Navigation