Skip to main content
Log in

A numerical simulation of latent heating within Typhoon Molave

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The weather research and forecasting (WRF) model is a new generation mesoscale numerical model with a fine grid resolution (2 km), making it ideal to simulate the macro- and micro-physical processes and latent heating within Typhoon Molave (2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater, sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler R F, Rodgers E B. 1977. Satellite-observed latent heat release in a tropical cyclone. Mon Wea Rev, 105(8): 956–963

    Article  Google Scholar 

  • Benjamin S O, Seaman N L. 1985. A simple scheme for objective analysis in curved flow. Mon Wea Rev, 113(7): 1184–1198

    Article  Google Scholar 

  • Betts A K. 1986. A new convective adjustment scheme: Part I. Observational and theoretical basis. Quart J Roy Meteor Soc, 112(473): 677–691

    Google Scholar 

  • Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 46(20): 3077–3107

    Article  Google Scholar 

  • Emanuel K A. 1999. Thermodynamic control of hurricane intensity. Nature, 401(6754): 665–669

    Article  Google Scholar 

  • Gray W M. 1981. Recent advances in tropical cyclone research from rawindsonde composite analysis. World Meteorological Organization Programme on Research in Tropical Meteorology. Geneva, Switzerland: WMO, 407

    Google Scholar 

  • Hogsett W, Zhang D L. 2009. Numerical simulation of hurricane bonnie (1998): Part III. Energetics. J Atmos Sci, 66(9): 2678–2696

    Article  Google Scholar 

  • Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc, 42(2): 129–151

    Google Scholar 

  • Hong S Y, Lim K S S, Kim J H, et al. 2009. Sensitivity study of cloudresolving convective simulations with WRF using two bulk microphysical parameterizations: ice-phase microphysics versus sedimentation effects. J Appl Meteor Climatol, 48(1): 61–76

    Article  Google Scholar 

  • Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev, 134(9): 2318–2341

    Article  Google Scholar 

  • Houze R A Jr. 1997. Stratiform precipitation in regions of convection: A meteorological paradox. Bull Amer Meteor Soc, 78(10): 2179–2196

    Article  Google Scholar 

  • Janjić Z I. 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev, 122(5): 927–945

    Article  Google Scholar 

  • Johnson R H. 1984. Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: implications for cumulus parameterization. Mon Wea Rev, 112(8): 1590–1601

    Article  Google Scholar 

  • Kummerow C, Hong Y, Olson W S, et al. 2001. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteor, 40(11): 1801–1820

    Article  Google Scholar 

  • Fong S K, Wu C S, Hao I P, et al. 2001. Numerical prediction experiment on Typhoon Maggie (9903). Acta Oceanol Sinica, 20(2): 171–181

    Google Scholar 

  • Lin W S, Xu S S, Sui C H. 2011. A numerical simulation of the effect of the number concentration of cloud droplets on Typhoon Chanchu. Meteor Atmos Phys, 113: 99–108

    Article  Google Scholar 

  • Low-Nam S, Davis C. 2001. Development of a tropical cyclone bogussing scheme for the MM5 system. In: Proceedings of the 11th PSU/NCAR Mesoscale Model User′s Workshop. Colorado: Boulder, 130–134

    Google Scholar 

  • Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-kmodel for the long wave. J Geophys Res, 102(D14): 16663–16682 doi: 10.1029/97JD00237

    Article  Google Scholar 

  • Molinari J, Dudek M. 1992. Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Wea Rev, 120(2): 326–344

    Article  Google Scholar 

  • Olson W S, Kummerow C D, Hong Y, et al. 1999. Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J Appl Meteor, 38(6): 633–664

    Article  Google Scholar 

  • Pattnaik S, Krishnamurti T N. 2007. Impact of cloud microphysical processes on hurricane intensity: Part 2. Sensitivity experiments. Meteor Atmos Phys, 97(1–4): 127–147

    Article  Google Scholar 

  • Riehl H, Malkus J S. 1958. On the heat balance in the equatorial trough zone. Geophysica, 6: 503–538

    Google Scholar 

  • Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the Advanced Research WRF version 2. NCAR Technical Note NCAR/TN-468+STR, 88

    Google Scholar 

  • Sui C H, Lau K M, Tao W K, et al. 1994. The tropical water and energy cycles in a cumulus ensemble model: Part I. Equilibrium climate. J Atmos Sci, 51(5): 711–728

    Article  Google Scholar 

  • Tao W K, Lang S, Simpson J, et al. 1993. Retrieval algorithms for estimating the vertical profiles of latent heat release: their applications for TRMM. J Meteor Soc Japan, 71(6): 685–700

    Article  Google Scholar 

  • Tao W K, Smith E A, Adler R F, et al. 2006. Retrieval of latent heating from TRMM measurements. Bull Amer Meteor Soc, 87(11): 1555–1572

    Article  Google Scholar 

  • Wang L, Lau K H, Zhang Q H, et al. 2008. Observation of non-developing and developing tropical disturbances over the South China Sea using SSM/I satellite. Geophys Res Lett, 35(10): L10802 doi: 10.1029/2008GL033446

    Article  Google Scholar 

  • Wu C C, Cheng H J, Wang Y Q, et al. 2009. A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon Wea Rev, 137(1): 21–40

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 30(4): 611–627

    Article  Google Scholar 

  • Yang S, Smith E A. 1999. Moisture budget analysis of TOGA COARE area using SSM/I-retrieved latent heating and large-scale Q2 estimates. J Atmos Oceanic Technol, 16(6): 633–655

    Article  Google Scholar 

  • Zhang D L, Kieu C Q. 2006. Potential vorticity diagnosis of a simulated hurricane: Part II. Quasi-balanced contributions to forced secondary circulations. J Atmos Sci, 63(11): 2898–2914

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Supercomputing Center in Guangzhou for providing the use of super-computers. We are grateful to the National Center for Atmospheric Research (NCAR) Mesoscale and Microscale Meteorology Division: http://www.mmm.ucar.edu/wrf/users, which is responsible for the WRF model. The National Centers for Environmental Prediction final (NCEP-FNL) global tropospheric analysis data for this paper are available at http://rda.ucar.edu/datasets/ds083.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshi Lin.

Additional information

Foundation item: The National Key Basic Research Program of China under contract No. 2014CB953904; the Natural Science Foundation of Guangdong Province under contract No. 2015A030311026; the National Natural Science Foundation of China under contract Nos 41275145 and 41275060.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lin, W., Li, J. et al. A numerical simulation of latent heating within Typhoon Molave. Acta Oceanol. Sin. 36, 39–47 (2017). https://doi.org/10.1007/s13131-017-1082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-017-1082-3

Key words

Navigation