Skip to main content

Advertisement

Log in

Sensitive and rapid detection of two toxic microalgae Alexandrium by loop-mediated isothermal amplification

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

A loop-mediated isothermal amplification (LAMP) assay was designed and evaluated for rapid detection of the toxic microalgae Alexandrium catenella and A. minutum, which can produce paralytic shellfish poisoning (PSP). Two sets of four specific primers targeting these two species were derived from the sequence of internal transcribed spacer (ITS) of ribosomal DNA. The method worked well in less than an hour under isothermal conditions of 65°C. LAMP specificity was validated in closely related algae as a comparison, suggesting the strict specificity of the LAMP primers. Two visual inspection approaches were feasible to interpret the positive or negative results. The detection limits of A. catenella and A. minutum samples using the LAMP assay were found to be 5.6 and 4.5 pg DNA, respectively. The sensitivity of this LAMP assay was 10 or 100-fold higher than Polymerase Chain Reaction (PCR) method in detecting the two microalgae. These characteristics of species specificity, sensitivity, and rapidity suggest that this method has the potentiality in the monitoring of red tide caused by A. catenella and A. minutum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi M, Sako Y, Ishida Y. 1996. Identification of the toxic dinoflagellates Alexandrium catenella and A. tamarense (Dinophyceae) using DNA probes and whole-cell hybridization. Journal of Phycology, 32: 1049–1052

    Article  Google Scholar 

  • Cembella A D. 1998. Ecophysiology and metabolism of paralytic shellfish toxins in marine microalgae. In: Anderson D M, Cembella A D, Hallegraeff G M, eds. Physiological Ecology of Harmful Blooms. Berlin: Springer-Verlag, 381–403

    Google Scholar 

  • Chang F H, Anderson D M, Kulis D M, et al. 1997. Toxin production of Alexandrium minutum (Dinophyceae) from the Bay of Plenty, New Zealand. Toxicon, 35(3): 393–409

    Article  Google Scholar 

  • Chen Yueqin, Qu Lianghao, Zeng Lingmei, et al. 1999. Molecular identification of red tide toxic Alexandrium tamarense-Aexandrium catenella from the South China Sea. Acta Oceanologica Sinica (in Chinese), 21(3): 106–112

    Google Scholar 

  • Coyne K J, Hutchins D A, Hare C E, et al. 2001. Assessing temporal and spatial variability in Pfiesteria piscicida distributions using molecular probing techniques. Aquatic Microbial Ecology, 24: 275–285

    Article  Google Scholar 

  • Fang-Xue En, Xiong Wei, Li Jian, et al. 2008. Loopmediated isothermal amplification establishment for detection of pseudorabies virus. Journal of Virological Methods, 151: 35–39

    Article  Google Scholar 

  • Fukuta S, Kato S, Yoshida K, et al. 2003. Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. Journal of Virological Methods, 112: 35–40

    Article  Google Scholar 

  • Galluzzi L, Penna A, Bertozzini E, et al. 2004. Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Applied and Environmental Microbiology, 70(2): 1199–1206

    Article  Google Scholar 

  • Gas F, Pinto L, Baus B, et al. 2009. Monoclonal antibody against the surface of Alexandrium minutum used in a whole-cell ELISA. Harmful Algae, 8: 538–545

    Article  Google Scholar 

  • Godhe A, Otta S K, Rehnstam-Holm A S, et al. 2001. Polymerase chain reaction in detection of Gymnodium mikimotoi and Alexandrium minutum in field samples from southwest India. Marine Biotechnology, 3: 152–162

    Article  Google Scholar 

  • Hallegraeff G, Steffensen D A, Wetherbee R. 1988. Three estuarine Australian dinoflagellates that can produce paralytic shellfish toxins. Journal Plankton Research, 10: 533–541

    Article  Google Scholar 

  • Hosoi-Tanabe S, Sako Y. 2005. Species-Specific Detection and quantification of toxic marine dinoflagellates Alexandrium tamarense and A. catenella by real-time PCR assay. Marine Biology, 7: 506–514

    Google Scholar 

  • Hosoi-Tanabe S, Tomishima S, Nagai S, et al. 2005. Identification of a gene induced in conjugation-promoted cells of toxic marine dinoflagellates Alexandrium tamarense and Alexandrium catenella using differential display analysis. FEMS Microbiology Letter, 251(1): 161–168

    Article  Google Scholar 

  • Kodama M. 2000. Ecobiology, classification, and origin. In: Botana L M, ed. Seafood and Freshwater Toxins: Pharmacology, Physiology and Detection. New York: Marcel Dekker Inc., 125–151

    Google Scholar 

  • Landsberg J H. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10: 113–390

    Article  Google Scholar 

  • Liang Bin, Wang Huan, Chen Bin, et al. 2009. Determination of Alexandrium sp. by fluorescence in situ hybridization (FISH). Marine Environmental Science (in Chinese), 28: 80–83

    Google Scholar 

  • Lenaers G, Scholin C A, Bhaud Y, et al. 1991. A molecular phylogeny of dinoflagellate protists (Pyrrophyta) inferred from the sequence of 24S ribosomal DNA divergent domains D1 and D8. Journal of Molecular Evolution, 32: 53–63

    Article  Google Scholar 

  • Mori Y, Nagamine K, Tomita N, et al. 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289: 150–154

    Article  Google Scholar 

  • Mori Y, Kitao M, Tomita N, et al. 2004. Real-time turbidimetry of LAMP reaction for quantifying template DNA. Journal of Biochemical Biophysical Methods, 59: 145–157

    Article  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, et al. 2000. Loopmediated isothermal amplification of DNA. Nucleic Acids Research, 28: 63

    Article  Google Scholar 

  • Nagamine K, Kuzuhara Y, Notomi T. 2002. Isolation of single-stranded DNA from loop-mediated isothermal amplification products. Biochemical and Biophysical Research Communications, 290: 1195–1198

    Article  Google Scholar 

  • Owers H A, Tengs T, Glasgow H B, et al. 2000. Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinofiagellates. Applied and Environmental Microbiology, 66: 4641–4648

    Article  Google Scholar 

  • Penna A, Garcés E, Vila M, et al. 2005. Alexandrium catenella (Dinophyceae), a toxic ribotype expanding in the NW Mediterranean Sea. Marine Biology, 148: 13–23

    Article  Google Scholar 

  • Penna A, Magnani M. 1999. Identification of Alexandrium (Dinophyceae) species using PCR and rDNA-targeted probes. Journal of Phycology, 35: 615–621

    Article  Google Scholar 

  • Rollo F, Sassaroli S, Boni L, et al. 1995. Molecular typing of the red-tide dinofiagellate Gonyaulax polyedra in phytoplankton suspensions. Aquatic Microbial Ecology, 9: 55–61

    Article  Google Scholar 

  • Sako Y, Hosoi-Tanabe S, Uchida A. 2004. Fluorescence in situ hybridization using rRNA-targeted probes for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and A. catenella. Journal of Phycology, 40: 598–605

    Article  Google Scholar 

  • Scholin C A, Herzog M, Sogin M, et al. 1994. Identification of group and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae), II: sequences analysis of a fragment of the LSU rRNA gene. Journal of Phycology, 30: 999–1011

    Article  Google Scholar 

  • Soliman H, El-Matbouli M. 2006. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of viral hemorrhagic septicaemia virus (VHS). Veterinary Microbiology, 114: 205–213

    Article  Google Scholar 

  • Tang Xianghai, Yu Rencheng, Chen Yang, et al. 2008. A oligonucleotide probe for detection of Alexandrium affine. Oceanologia et Limnologia Sinica (in Chinese), 39(6): 650–654

    Google Scholar 

  • Yang I, John U, Beszteri S, et al. 2010. Comparative gene expression in toxic versus non-toxic strains of the marine dinoflagellate Alexandrium minutum. BMC Genomics, 11: 248

    Article  Google Scholar 

  • Yu Rencheng, Tang Xianghai, Zhang Qingchun, et al. 2006. Application of fluorescence in situ hybridization (FISH) method to detect “tamarense/catenella species complex” (“Temperate Asian” ribotype) in Genus Alexandrium along Chinese coast. Acta Scientiae Circumstantiae (in Chinese), 26(4): 646–651

    Google Scholar 

  • Zhang Fengying, Ma Lingbo, Xu Zhaoli, et al. 2009. Sensitive and rapid detection of Karenia mikimotoi (Dinophyceae) by loop-mediated isothermal ampli-fication. Harmful Algae, 8: 839–842

    Article  Google Scholar 

  • Zhuang Li, Chen Yueqin, Li Qinliang, et al. 2001. Sequence determination and analysis of 18 rDNA and internal transcribed spacer regions of red tide-related Creratium furca. Oceanologia et Limnologia Sinica (in Chinese), 32: 148–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingbo Ma.

Additional information

Foundation item: The Science and Technology Commission of Shanghai Municipality under contract Nos 062358101, 08DZ1980802 and 10JC1418600; a special research fund for the national non-profit institutes (East China Sea Fisheries Research Institute) under contract Nos 2007M22 and 2007Z01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Shi, Y., Jiang, K. et al. Sensitive and rapid detection of two toxic microalgae Alexandrium by loop-mediated isothermal amplification. Acta Oceanol. Sin. 31, 139–146 (2012). https://doi.org/10.1007/s13131-012-0200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-012-0200-5

Key words

Navigation