Skip to main content
Log in

Inferring host-cleptoparasite complexes of South American Centridine bees (Hymenoptera: Apidae) using macroecological perspectives

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Bees are normally regarded as social insects that build hives and visit flowers to collect pollen to feed their offspring. However, throughout their evolutionary history, several lineages have lost these characteristics, and have instead, become cleptoparasites, depending on other bee species to raise their offspring. Since cleptoparasites depend on hosts to persist in a location, we could expect that the geographic distribution of the later also influences the distribution the former, mainly in specialized forms of parasitism. Moreover, we could also expect that cleptoparasites ecological niches would evolve to overlap with its respective host(s). Here, we applied multivariate bioclimatic niche analyses and species distribution models to evaluate the effects of host-cleptoparasite relationships on the distribution and ecological niche of Centris and Epiclopus from Chile. Based on our results, considering the species’ distribution range and multivariate niche overlaps, we were able to (1) evaluate the specificity of cleptoparasitism among host-parasite complexes and (2) infer the existence of still uncaptured relationships between the available host and cleptoparasite species. With our results in hand, it is possible to start discussing and decreasing the so-called Eltonian shortfall (lack of proper knowledge on the interactions each species maintains with others). Although not conclusive, these results support the need for continuous sampling of bees and insect species in general, in order to allow the unveiling and better description of their biological relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamson, M. L., & Caira, J. N. (1994). Evolutionary factors influencing the nature of parasite specificity. Parasitology, 109 Suppl, S85–S95 http://www.ncbi.nlm.nih.gov/pubmed/7854854. Accessed 5 November 2018.

    Article  CAS  PubMed  Google Scholar 

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.

    Article  Google Scholar 

  • Anderson, R. P. (2017). When and how should biotic interactions be considered in models of species niches and distributions? Journal of Biogeography, 44(1), 8–17. https://doi.org/10.1111/jbi.12825.

    Article  Google Scholar 

  • Anderson, R. P., & Gonzalez, I. J. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecological Modelling, 222, 2796–2811.

    Article  Google Scholar 

  • Araújo, M. B., & Rozenfeld, A. (2014). The geographic scaling of biotic interactions. Ecography, 37, 406–415. https://doi.org/10.1111/j.1600-0587.2013.00643.x.

    Article  Google Scholar 

  • Augusto, S. C., & Garófalo, C. A. (2004). Nesting biology and social structure of Euglossa (Euglossa) townsendi Cockerell (Hymenoptera, Apidae, Euglossini). Insectes Sociaux, 51, 400–409.

    Article  Google Scholar 

  • Beaumont, L. J., Hughes, L., & Poulsen, M. (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling, 186, 251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030.

    Article  Google Scholar 

  • Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M. J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497.

    Article  Google Scholar 

  • Cardoso, P., Erwin, T. L., Borges, P. A. V., & New, T. R. (2011). The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647–2655.

    Article  Google Scholar 

  • Cooper, N., Griffin, R., Franz, M., Omotayo, M., & Nunn, C. L. (2012). Phylogenetic host specificity and understanding parasite sharing in primates. Ecology Letters, 15(12), 1370–1377. https://doi.org/10.1111/j.1461-0248.2012.01858.x.

    Article  PubMed  Google Scholar 

  • Darwell, C. T., Segraves, K. A., & Althoff, D. M. (2017). The role of abiotic and biotic factors in determining coexistence of multiple pollinators in the yucca-yucca moth mutualism. Ecography, 40(4), 511–520. https://doi.org/10.1111/ecog.02193.

    Article  Google Scholar 

  • Di Cola, V., Broennimann, O., Petitpierre, B., Randin, C. F., Engler, R., Breiner, F., D’Amen, M., et al. (2017). Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787. https://doi.org/10.1111/ecog.02671

  • Duan, R.-Y., Kong, X.-Q., Huang, M.-Y., Fan, W.-Y., & Wang, Z.-G. (2014). The predictive performance and stability of six species distribution models. PLoS One, 9(11), e112764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57.

    Article  Google Scholar 

  • Gaglianone, M. C., Aguiar, A. J. C., Vivallo, F., & Alves-dos-Santos, I. (2011). Checklist das abelhas coletoras de óleos do estado de São Paulo. Biota Neotropica, 11, 657–666.

    Article  Google Scholar 

  • Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x.

    Article  Google Scholar 

  • Giannini, T. C., Chapman, D. S., Saraiva, A. M., Alves-dos-Santos, I., & Biesmeijer, J. C. (2013). Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography, 36(6), 649–656.

    Article  Google Scholar 

  • Godoy, O., Bartomeus, I., Rohr, R. P., & Saavedra, S. (2018). Towards the integration of niche and network theories. Trends in Ecology & Evolution, 33(4), 287–300. https://doi.org/10.1016/j.tree.2018.01.007.

    Article  Google Scholar 

  • Gutiérrez, E. E., Boria, R. A., & Anderson, R. P. (2014). Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossums. Ecography, 37(8), 741–753. https://doi.org/10.1111/ecog.00620.

    Article  Google Scholar 

  • Hanson, P. E., West-Eberhard, M. J., & Gauld, I. D. (2006). Relaciones simbióticas de los Hymenoptera constructores de nido. In: P. Hanson & I. Gauld, (Eds.) Hymenoptera de la Región Neotropical (Memoirs of.). American Entomological Institute, vol. 77, 994 pp.

  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46(1), 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400.

    Article  Google Scholar 

  • Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785–2797. https://doi.org/10.1007/s10530-011-9963-4.

    Article  Google Scholar 

  • Little, T. J., Watt, K., & Ebert, D. (2006). Parasite-host specificity: experimental studies on the basis of parasite adaptation. Evolution, 60(1), 31–38. https://doi.org/10.1111/j.0014-3820.2006.tb01079.x.

    Article  PubMed  Google Scholar 

  • Liu, C. R., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385–393.

    Article  Google Scholar 

  • Liu, C., White, M., & Newell, G. (2011). Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography, 34, 232–243.

    Article  CAS  Google Scholar 

  • Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15(1), 59–69.

    Article  Google Scholar 

  • Michener, C. D. (2007). The bees of the world (2nd ed., Vol. 2nd). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Moure, J. S., Melo, G. A. R., & Vivallo, F. (2007). Centridini Cockerell & Cockerell. In J. S. Moure, D. Urban, & G. A. R. Melo (Eds.), Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region (1st ed., pp. 83–142). Curitiba.

  • Muñoz, M. E. S., De Giovanni, R., de Siqueira, M. F., Sutton, T., Brewer, P., Pereira, R. S., et al. (2011). openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica, 15, 111–135.

    Article  Google Scholar 

  • Nemésio, A., & Silveira, F. A. (2006). Deriving ecological relationships from geographical correlations between host and parasitic species: an example with orchid bees. Journal of Biogeography, 33, 91–97.

    Article  Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

    Article  Google Scholar 

  • Pellissier, L., Bråthen, K. A., Pottier, J., Randin, C. F., Vittoz, P., Dubuis, A., et al. (2010). Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 33, 1004–1014. https://doi.org/10.1111/j.1600-0587.2010.06386.x.

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • R Development Core Team. (2018). R: a language and environment for statistical computing. Viena, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Raxworthy, C. J., Martínez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A., & Peterson, A. T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837–841.

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Filho, L. C., Morato, E. F., & Melo, G. A. R. (2009). New host records of Aglaomelissa duckei and a compilation of host associations of Ericrocidini bees (Hymenoptera: Apidae). Zoologia, 26, 299–304.

    Article  Google Scholar 

  • Roig-Alsina, A., & Michener, C. D. (1993). Studies on the phylogeny and classification of long-tongued bees (Hymenoptera: Apoidea). The University of Kansas Science Bulletin, 55, 123–162.

    Article  Google Scholar 

  • Rozen, J. G. (2000). Pupal descriptions of some cleptoparasitic bees (Apidae), with a preliminary generic key to pupae of cleptoparasitic bees. American Museum Novitates, 3289, 1–19.

    Article  Google Scholar 

  • Rozen, J. G. (2001). A taxonomic key to mature larvae of cleptoparasitic bees (Hymenoptera: Apoidea). American Museum Novitates, 3309, 1–27.

    Article  Google Scholar 

  • Rozen, J. G., & Garófalo, C. A. (2001). Parasitic behavior of Exaerete smaragdina with descriptions of its mature oocyte and larval instars (Hymenoptera, Apidae, Euglossini). American Museum Novitates, 3349, 1–26.

    Article  Google Scholar 

  • Schleuning, M., Fründ, J., Schweiger, O., Welk, E., Albrecht, J., Albrecht, M., Beil, M., Benadi, G., Blüthgen, N., Bruelheide, H., Böhning-Gaese, K., Dehling, D. M., Dormann, C. F., Exeler, N., Farwig, N., Harpke, A., Hickler, T., Kratochwil, A., Kuhlmann, M., Kühn, I., Michez, D., Mudri-Stojnić, S., Plein, M., Rasmont, P., Schwabe, A., Settele, J., Vujić, A., Weiner, C. N., Wiemers, M., & Hof, C. (2016). Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 7, 13965. https://doi.org/10.1038/ncomms13965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51(3), 408–418.

    Article  Google Scholar 

  • Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

    Article  PubMed  Google Scholar 

  • Schweiger, O., Heikkinen, R. K., Harpke, A., Hickler, T., Klotz, S., Kudrna, O., Kühn, I., Pöyry, J., & Settele, J. (2012). Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 21(1), 88–99. https://doi.org/10.1111/j.1466-8238.2010.00607.x.

    Article  Google Scholar 

  • Sheffield, C. S., Pindar, A., Packer, L., & Kevan, P. G. (2013). The potential of cleptoparasitic bees as indicator taxa for assessing bee communities. Apidologie, 44(5), 501–510. https://doi.org/10.1007/s13592-013-0200-2.

    Article  Google Scholar 

  • Silva, D. P., Vilela, B., De Marco Jr, P., & Nemésio, A. (2014). Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees. PLoS One, 9(11), e113246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, D. P., Vilela, B., Buzatto, B. A., Moczek, A. P., & Hortal, J. (2016). Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biological Invasions, 18, 3137–3148. https://doi.org/10.1007/s10530-016-1204-4.

    Article  Google Scholar 

  • Souza, R. A., & De Marco, P. (2014). The use of species distribution models to predict the spatial distribution of deforestation in the western Brazilian Amazon. Ecological Modelling, 291, 250–259. https://doi.org/10.1016/j.ecolmodel.2014.07.007.

    Article  Google Scholar 

  • Tax, D. M. J., & Duin, R. P. W. (2004). Support vector data description. Machine Learning, 54, 45–66.

    Article  Google Scholar 

  • Trainor, A. M., & Schmitz, O. J. (2014). Infusing considerations of trophic dependencies into species distribution modelling. Ecology Letters, 17(12), 1507–1517. https://doi.org/10.1111/ele.12372.

    Article  PubMed  Google Scholar 

  • Vasconcelos, T. S., Antonelli, C. P., & Napoli, M. F. (2017). Mutualism influences species distribution predictions for a bromeliad-breeding anuran under climate change. Austral Ecology, 42(7), 869–877. https://doi.org/10.1111/aec.12509.

    Article  Google Scholar 

  • Vivallo, F. (2013). Revision of the bee subgenus Centris (Wagenknechtia) Moure, 1950 (Hymenoptera: Apidae: Centridini). Zootaxa, 3683, 501–537.

    Article  PubMed  Google Scholar 

  • Vivallo, F. (2014). Taxonomic revision of the cleptoparasitic bee genus Epiclopus Spinola, 1851 (Hymenoptera: Apidae: Ericrocidini). Zootaxa, 3857, 41–70.

    Article  PubMed  Google Scholar 

  • Vivallo, F., Zanella, F. C. V., & Toro, H. (2003). Las especies chilenas de Centris (Paracentris) Cameron, 1903 y Centris (Penthemisia) Moure, 1950 (Hymenoptera: Apidae). In G. A. R. Melo & I. Alves-dos-Santos (Eds.), Apoidea Neotropica: Homenagem aos 90 anos de Jesus Santiago Moure (1st ed., pp. 77–83). Criciúma: UNESC.

    Google Scholar 

  • Vivallo, F., Vélez, D., & Fernández, F. (2016). Two new species of Centris (Aphemisia) Ayala, 2002 from Colombia with a synopsis of the subgenus for the country (Hymenoptera: Apidae: Centridini). Zootaxa, 4093, 201–216.

    Article  PubMed  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.

    Article  PubMed  Google Scholar 

  • Wcislo, W. T. (1987). The roles of seasonality, host synchrony, and behaviour in the evolutions and distributions of nest parasites in Hymenoptera (Insecta), with special reference to bees (Apoidea). Biological Reviews, 62, 511–543.

    Article  Google Scholar 

  • Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M., & Willis, K. J. (2005). Conservation biogeography: assessment and prospect. Diversity and Distributions, 11, 3–23.

    Article  Google Scholar 

  • Wielstra, B., Beukema, W., Arntzen, J. W., Skidmore, A. K., Toxopeus, A. G., & Raes, N. (2012). Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS One, 7(9), e46671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanella, F. C. V. (2002). Sistemática, filogenia e distribuição geográfica das espécies sul-americanas de Centris (Paracentris) Cameron, 1903 e de Centris (Penthemisia) Moure, 1950, incluindo uma análise filogenética do “grupo Centrissensu Ayala, 1998 (Hymenoptera, Apoidea, Centridini). Revista Brasileira de Entomologia, 46, 435–488.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers who provided valuable suggestions for a previous version of this manuscript. This paper is part of the SIGMA project No. 21565 MN/UFRJ and the contribution number 29 from the HYMN.

Funding

Financial support was provided to FV by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 444320/2014-8), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Paiva Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivallo, F., Vilela, B. & Silva, D.P. Inferring host-cleptoparasite complexes of South American Centridine bees (Hymenoptera: Apidae) using macroecological perspectives. Org Divers Evol 19, 179–190 (2019). https://doi.org/10.1007/s13127-019-00394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00394-3

Keywords

Navigation