Skip to main content
Log in

Impact of habitat and life trait on character evolution of pallial eyes in Pectinidae (Mollusca: bivalvia)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Pectinidae, a large group of marine bivalves comprising more than 300 species worldwide, inhabit a diverse array of habitats, enabling an enormous radiation, and yielding many different life forms and adaptations. This apparent diversity led to the distinction of ecotypes based on shell morphology and lifestyle. Eyes in Pectinidae (Bivalvia, Pteriomorphia) have long sparked scientific interest and have been described for various species over the past two centuries. These eyes are morphologically and functionally highly complex. Despite this complexity, studies have focused mostly on functional aspects with only few examining the relationships associated with different environmental or evolutionary traits. Here, the pallial eye structure within the Pectinidae was examined using Masson Goldner Trichrom staining, and ancestral character estimation with BayesTraits was performed to reconstruct macro-evolutionary patterns. To evaluate the connection of substrate type and lifestyle to the evolution of eyes, we compared eyes within the major subgroups of Pectinidae while considering the different lifestyles and substrate types as well as different depth ranges. The results indicate a tendency towards a taxon-/clade-specific evolution in respect to characters such as the cornea and lens while depth specific adaptations occur mainly in the light sensitive compartments of the retina. Successive reduction of eyes seems to occur from shallow to deep water species and ends in a total reduction of all structures in deep sea species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alejandrino, A., Puslednik, L., & Serb, J. M. (2011). Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae). BMC Evolutionary Biology, 11, 164.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brand, A. R. (2006). Chapter 12. Scallop Ecology: Distributions and Behavior. In S. E. Shumway & J. Parsons (Eds.), Scallops: Biology (Ecology and Aquaculture, 2nd edn, pp. 651–713). Elsevier: Amsterdam.

    Chapter  Google Scholar 

  • Butcher, E. O. (1930). The formation, regeneration, and transplantation of eyes in Pecten (Gibbus borealis). Biological Bulletin, 59(2), 154–164.

    Article  Google Scholar 

  • Ciocco, N. F. (1998). Anatomía de la "vieira tehuelche", Aequipecten tehuelchus (d'Orbigny, 1846) (=Chlamys tehuelcha). IV, Sistema nervioso y estructuras sensoriales (Bivalvia, Pectinidae). Revista de Biología Marina y Oceanografía, 33(1), 25–42.

    Google Scholar 

  • Crocetta, F., & Spanu, M. (2008). Molluscs associated with a Sardinian deep water population of Corallium rubrum (Linné, 1758). Mediterranean Marine Science, 9(2), 63–85.

    Article  Google Scholar 

  • Cronin, T. W. (1986). Photoreception in marine invertebrates. American Zoologist, 26, 403–415.

    Google Scholar 

  • Dakin, W. J. (1909). Pecten. Series: L.M.B.C. memoirs on typical British marine plants and animals 17 (pp. 1–136). London: Williams & Norgate. plates 1–9.

    Google Scholar 

  • Dakin, W. J. (1910). The eye of Pecten. The Quarterly Journal of Microscopical Science, 55, 49–112. plates 6-7.

    Google Scholar 

  • Dakin, W. J. (1928). The eyes of Pecten, Spondylus, Amussium and allied Lamellibranchs, with a short discussion on their evolution. Proceedings of the Royal Society London Series B, Containing Papers of a Biological Character, 103(725), 355–365.

    Article  Google Scholar 

  • Dijkstra, H. H. (1991). A contribution to the knowledge of the pectinacean Mollusca (Bivalvia: Propeamussiidae, Entoliidae, Pectinidae) from the Indonesian Archipelago. Zoologische Verhandelingen (Leiden), 271, 1–57.

    Google Scholar 

  • Dijkstra, H. H., Warén, A., & Gudmundsson, G. (2009). Pectinoidea (Mollusca: Bivalvia) from Iceland. Marine Biology Research, 5, 207–243.

    Article  Google Scholar 

  • Drew, G. A. (1906). The habits anatomy, and embryology of the giant scallop. (Pecten tenuicostatus, Mighels) (pp. 1–71). Maine: Orono.

    Google Scholar 

  • Freiwald, A., & Schönfeld, J. (1996). Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Marine Micropaleontology, 28, 199–207.

    Article  Google Scholar 

  • Gilkinson, K. D., & Gagnon, J. M. (1991). Substratum associations of natural populations of Iceland scallops, Chlamys islandica Müller 1776, on the northeastern Grand Bank of Newfoundland. American Malacological Bulletin, 9, 59–67.

    Google Scholar 

  • Hautmann, M. (2010). The first scallop. Palaeontologische Zeitschrift, 84, 317–322.

    Article  Google Scholar 

  • Horváth, G., & Varjú, D. (1993). Theoretical study of the optimal shape of the front profile of the lens in the scallop, Pecten. Bulletin of Mathematical Biology, 55(1), 155–174.

    Google Scholar 

  • Hrs-Brenko, M., & Legac, M. (2006). Inter- and intra-species relationships of sessile bivalves on the eastern coast of the Adriatic Sea. Natura Croatica, 15(4), 203–230.

    Google Scholar 

  • Huber, M. (2010). Compendium of Bivalves (pp. 1–901). Hackenheim: Conchbooks.

    Google Scholar 

  • Johnsen, S., & Sosik, H. (2004). Shedding Light on Light in the Ocean—new research is illuminating an optically complex environment. Oceanus Magazine, 43(2), 1–5.

    Google Scholar 

  • Jonasova, K., & Kozmik, Z. (2008). Eye evolution: lens and cornea as an upgrade of animal visual system. Seminars in Cell & Developmental Biology, 19, 71–81.

    Article  Google Scholar 

  • Kosaka, Y., & Ito, H. (2006). Chapter 22. Japan. In S. E. Shumway & J. Parsons (Eds.), Scallops: Biology, Ecology and Aquaculture (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Küpfer, M. (1916). Entwicklungsgeschichtliche und neuro-histologische Beiträge zur Kenntnis der Sehorgane am Mantelrande der Pecten-Arten: mit anschliessenden vergleichend-anatomischen Betrachtungen (pp. 1–312). Jena: Fischer.

    Google Scholar 

  • Land, M. F. (1965). Image formation by a concave reflector in the eye of the scallop, Pecten maximus. The Journal of Physiology, 179, 138–153.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malkowsky, Y., & Klussmann-Kolb, A. (2012). Phylogeny and spatio-temporal distribution of European Pectinidae (Mollusca: Bivalvia). Systematics and Biodiversity, 10(2), 233–242.

    Article  Google Scholar 

  • Minchin, D. (2003). Introductions: some biological and ecological characteristics of scallops. Aquatic Living Resources, 16, 521–532.

    Article  Google Scholar 

  • Morton, B. (1980). Swimming in Amusium pleuronectes (Bivalvia: Pectinidae). Journal of Zoology, 190(3), 375–404.

    Article  Google Scholar 

  • Morton, B. (2000a). The pallial eyes of Ctenoides floridanus (Bivalvia: Limoidea). Journal of Molluscan Studies, 66, 449–455.

    Article  Google Scholar 

  • Morton, B. (2000b). The function of pallial eyes within the Pectinidae, with a description of those present in Patinopecten yessoensis. In E. M. Harper, J. D. Taylor, & J. A. Crame (Eds.), The Evolutionary Biology of the Bivalvia (pp. 247–255). London: Geological Society. Special Publications, 177.

    Google Scholar 

  • Morton, B. (2001). The evolution of eyes in the Bivalvia. Oceanography and Marine Biology. An Annual Review, 39, 165–205.

    Google Scholar 

  • Morton, B. (2008). The evolution of eyes in the Bivalvia: New Insights. American Malacological Bulletin, 26(1/2), 35–45.

    Article  Google Scholar 

  • Morton, B., & Thurston, M. H. (1989). The functional morphology of Propeamussium lucidum (Bivalvia: Pectinacea), a deep-sea predatory scallop. Journal of Zoology, 218(3), 471–496.

    Article  Google Scholar 

  • Otten, E. (1982). Vision in some percoid fishes: a study in functional morphology. In S. Peters (Ed.), Organismus und Anpassung. Aufsätze und Reden der Senckenbergischen Naturforschenden Gesellschaft (pp. 81–87). Frankfurt am Main: Kramer.

    Google Scholar 

  • Pagel, M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society B, 255, 37–45.

    Article  Google Scholar 

  • Pagel, M., Meade, A., & Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Systematic Biology, 53, 673–684.

    Article  PubMed  Google Scholar 

  • Patten, W. (1887). Eyes of Molluscs and Arthropods. Journal of Morphology, 1(1), 67–92. plate 3.

    Article  Google Scholar 

  • Piatigorsky, J. (2001). Enigma of the abundant water-soluble cytoplasmic proteins of the cornea—the “Refracton” Hypothesis. Cornea, 20(8), 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Poppe, G.T. & Goto, Y. (1993). European seashells Volume II. Verlag Christa Hemmen Wiesbaden, 1-221.

  • Puslednik, L., & Serb, J. M. (2008). Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia) and effect of increased taxon sampling and outgroup selection on tree topology. Molecular Phylogenetics and Evolution, 48, 1178–1188.

    Article  CAS  PubMed  Google Scholar 

  • Raines, B. K., & Poppe, G. T. (2006). The Family Pectinidae. In G. T. Poppe & K. Groh (Eds.), A Conchological Iconography (pp. 1–722). Hackenheim: Conch Books.

    Google Scholar 

  • Salvini-Plawen, L. V. (2008). Photoreception and the polyphyletic evolution of photoreceptors (with special reference to Mollusca). American Malacological Bulletin, 26(1/2), 83–100.

    Article  Google Scholar 

  • Speiser, D. I., & Johnsen, S. (2008a). Comparative morphology of the concave mirror eyes of scallops (Pectinoidea). American Malacological Bulletin, 26(1/2), 27–33.

    Article  Google Scholar 

  • Speiser, D. I., & Johnsen, S. (2008b). Scallops visually respond to the size and speed of virtual particles. The Journal of Experimental Biology, 211, 2066–2070.

    Article  PubMed  Google Scholar 

  • Speiser, D. I., Loew, E. R., & Johnsen, S. (2011). Spectral sensitivity of the concave mirror eyes of scallops: potential influences of habitat, self-screening and longitudinal chromatic aberration. The Journal of Experimental Biology, 214, 422–431.

    Article  PubMed  Google Scholar 

  • Stanley, S. M. (1970). Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir, 125, 1–296.

    Article  Google Scholar 

  • Stanley, S. M. (1972). Functional morphology and evolution of byssally attached bivalve mollusk. Journal of Paleontology, 46(2), 165–212.

    Google Scholar 

  • Trigg, C., & Moore, C. G. (2009). Recovery of the biogenic nest habitat of Limaria hians (Mollusca: Limacea) following anthropogenic disturbance. Estuarine, Coastal and Shelf Science, 82, 351–356.

    Article  CAS  Google Scholar 

  • Viana, M. G., & Rocha-Barreira, C. A. (2007). The sensorial structures of Spondylus americanus Hermann, 1781 (Mollusca: Bivalvia, Spondylidae). Brazilian Archives of Biology and Technology, 50(5), 815–819.

    Article  Google Scholar 

  • Waller, T.R. (2006). Phylogeny of families in the Pectinoidea (Mollusca: Bivalvia): importance of the fossil record. In Bieler R (ed) Bivalvia—a look at the Branches. Zoological Journal of the Linnean Society, 148, 313–342.

  • Wilkens, L. A. (2008). Primary inhibition by light: A unique property of bivalve photoreceptors. American Malacological Bulletin, 26(1/2), 101–109.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to the following colleagues for the generous loan of material and hospitality in their laboratories: Dr. Bernhard Hausdorf (HH), Dr. Ronald Janssen (SMN), Dr. Kennet Lundin (Göteborg), and Dr. Anders Warén (SMNH). The following people and institutions assisted with collection of material: Dr. Michael Türkay (SMN) Observatoire Océanologique de Banyuls sur mer and Station Biologique Roscoff. Thanks also to Dipl. Biol. Juliane Vehof for her assistance with sectioning and staining and Dr. Eugenia Zarza-Franco and Dr. Jan Schnitzler for their introduction to BayesTraits. Thanks also go to Annette Klussmann-Kolb and the four anonymous reviewers for their unwavering efforts and most helpful comments on the manuscript. This research was funded by the Hessian initiative for the development of scientific and economic excellence (LOEWE) at the Biodiversity and Climate Research Centre (BiK-F), Frankfurt/Main.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Malkowsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 13 kb)

ESM 2

(PDF 14 kb)

ESM 3

(PDF 18 kb)

ESM 4

(PDF 3132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkowsky, Y., Götze, MC. Impact of habitat and life trait on character evolution of pallial eyes in Pectinidae (Mollusca: bivalvia). Org Divers Evol 14, 173–185 (2014). https://doi.org/10.1007/s13127-013-0165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-013-0165-z

Keywords

Navigation